【題目】已知三點O(0,0),A(﹣2,1),B(2,1),曲線C上任意一點M(x,y)滿足| +
|=
(
+
)+2.
(1)求曲線C的方程;
(2)動點Q(x0 , y0)(﹣2<x0<2)在曲線C上,曲線C在點Q處的切線為直線l:是否存在定點P(0,t)(t<0),使得l與PA,PB都相交,交點分別為D,E,且△QAB與△PDE的面積之比是常數?若存在,求t的值.若不存在,說明理由.
【答案】
(1)解:由 =(﹣2﹣x,1﹣y),
=(2﹣x,1﹣y)可得
+
=(﹣2x,2﹣2y),
∴| +
|=
,
(
+
)+2=(x,y)(0,2)+2=2y+2.
由題意可得 =2y+2,化簡可得 x2=4y.
(2)解:假設存在點P(0,t)(t<0),滿足條件,則直線PA的方程是y= ,直線PB的方程是y=
∵﹣2<x0<2,∴
①當﹣1<t<0時, ,存在x0∈(﹣2,2),使得
∴l∥PA,∴當﹣1<t<0時,不符合題意;
②當t≤﹣1時, ,
,
∴l與直線PA,PB一定相交,分別聯立方程組
,
,解得D,E的橫坐標分別是
,
∴
∵|FP|=﹣
∴ =
∵
∴ ×
∵x0∈(﹣2,2),△QAB與△PDE的面積之比是常數
∴ ,解得t=﹣1,
∴△QAB與△PDE的面積之比是2.
【解析】(1)用坐標表示 ,
,從而可得
+
,可求|
+
|,利用向量的數量積,結合M(x,y)滿足|
+
|=
(
+
)+2,可得曲線C的方程;(2)假設存在點P(0,t)(t<0),滿足條件,則直線PA的方程是y=
,直線PB的方程是y=
分類討論:①當﹣1<t<0時,l∥PA,不符合題意;②當t≤﹣1時,
,
,分別聯立方程組,解得D,E的橫坐標,進而可得△QAB與△PDE的面積之比,利用其為常數,即可求得結論.
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為集合A,B={x|x<a}.
(1)求集合A;
(2)若AB,求a的取值范圍;
(3)若全集U={x|x≤4},a=-1,求U A及A∩(U B).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為40%.現采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產生0到9之間取整數值的隨機數,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數作為一組,代表這三天的下雨情況.經隨機模擬試驗產生了如下20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,這三天中恰有兩天下雨的概率近似為
A.0.35 B.0.25 C.0.20 D.0.15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2x的焦點為F,平行于x軸的兩條直線l1 , l2分別交C于A,B兩點,交C的準線于P,Q兩點.
(1)若F在線段AB上,R是PQ的中點,證明AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面命題中,正確的命題有( )
①若n1,n2分別是不同平面α,β的法向量,則n1∥n2α∥β;
②若n1,n2分別是平面α,β的法向量,則α⊥βn1·n2=0;
③若n是平面α的法向量,b,c是α內兩個不共線的向量,a=λb+μc(λ,μ∈R),則n·a=0;
④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①若函數在區間
上單調遞增,則
;
②若 (
且
),則
的取值范圍是
;
③若函數,則對任意的
,都有
;
④若 (
且
),在區間
上單調遞減,則
.
其中所有正確命題的序號是______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,E,F分別是AB,PD的中點,若PA=AD=3,CD=
①求證:AF∥平面PCE
②求證:平面PCE⊥平面PCD
③求直線FC與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業的計劃.年某企業計劃引進新能源汽車生產設備,通過市場分析,全年需投入固定成本
萬元,每生產
(百輛),需另投入成本
萬元,且
.由市場調研知,每輛車售價
萬元,且全年內生產的車輛當年能全部銷售完.
(1)求出2018年的利潤(萬元)關于年產量
(百輛)的函數關系式;(利潤=銷售額-成本)
(2)2018年產量為多少百輛時,企業所獲利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com