【題目】已知拋物線C:y2=4x,直線l交于A,B兩點,O為坐標原點,直線OA,OB的斜率分別為k1,k2,若k1k2=﹣2,則△AOB面積的最小值為_____.
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和為Sn=2n+1﹣2,數列{bn}是首項為a1,公差為d(d≠0)的等差數列,且b1,b3,b11成等比數列.
(1)求數列{an}與{bn}的通項公式;
(2)設cn,求數列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,PA=PD=AD=2,BC=1,.
(1)求證:平面PQB⊥平面PAD;
(2)若M是棱PC上的一點,且滿足,求二面角M﹣BQ﹣C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率為
,且經過點
.
(1)求橢圓的標準方程;
(2)設直線與橢圓
交
兩點,
是坐標原點,分別過點
作
,
的平行線,兩平行線的交點剛好在橢圓
上,判斷
是否為定值?若為定值,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,過點
且斜率為
的直線與拋物線相交于
兩點.設直線
是拋物線
的切線,且直線
為
上一點,且
的最小值為
.
(1)求拋物線的方程;
(2)設是拋物線
上,分別位于
軸兩側的兩個動點,
為坐標原點,且
.求證:直線
必過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據氣象部門預報,在距離某個碼頭A南偏東45°方向的600km處的熱帶風暴中心B正以30km/h的速度向正北方向移動,距離風暴中心450km以內的地區都將受到影響,從現在起經過___小時后該碼頭A將受到熱帶風暴的影響(精確到0.01).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著移動互聯網的快速發展,基于互聯網的共享單車應運而生.某市場研究人員為了了解共享單車運營公司的經營狀況,對該公司最近六個月內的市場占有率進行了統計,并繪制了相應的折線圖.
(Ⅰ)由折線圖得,可用線性回歸模型擬合月度市場占有率與月份代碼
之間的關系.求
關于
的線性回歸方程,并預測
公司2017年5月份(即
時)的市場占有率;
(Ⅱ)為進一步擴大市場,公司擬再采購一批單車.現有采購成本分別為1000元/輛和1200元/輛的兩款車型可供選擇,按規定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導致車輛報廢年限各不形同,考慮到公司運營的經濟效益,該公司決定先對兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命頻數表見上表.
經測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負責人,以每輛單車產生利潤的期望值為決策依據,你會選擇采購哪款車型?
(參考公式:回歸直線方程為,其中
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com