精英家教網 > 高中數學 > 題目詳情

已知f(x)=(x∈R)在區間[-1,1]上是增函數.
(1)求實數a的值組成的集合A;
(2)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

(1)A={a|-1≤a≤1}. (2){m|m≥2,或m≤-2}.)

解析試題分析:(1)f'(x)== ,
∵f(x)在[-1,1]上是增函數,∴f'(x)≤0對x∈[-1,1]恒成立,
即x2-ax-2≤0對x∈[-1,1]恒成立.       ①
(x)=x2-ax-2,
① -1≤a≤1,
∵對x∈[-1,1],f(x)是連續函數,且只有當a=1時,f'(-1)=0以及當a=-1時,f'(1)=0
∴A={a|-1≤a≤1}.                        -6分
(2)由=,得x2-ax-2=0,  ∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的兩實根,
從而|x1-x2|==.
∵-1≤a≤1,∴|x1-x2|=≤3.                10分
要使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,
當且僅當m2+tm+1≥3對任意t∈[-1,1]恒成立,
即m2+tm-2≥0對任意t∈[-1,1]恒成立.       ②
設g(t)=m2+tm-2=mt+(m2-2),
(方法一:)
m≥2或m≤-2.
所以,存在實數m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.                      --14分
(注:方法二: 當m=0時,②顯然不成立;  當m≠0時,
  m≥2或m≤-2.
所以,存在實數m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,
其取值范圍是{m|m≥2,或m≤-2}.)
考點:本題主要考查集合的概念,應用導數研究函數的性質、方程的根,不等式恒成立問題。
點評:難題,在某區間,導函數值非負,則函數為增函數;導函數值非正,則函數為減函數。通過研究函數的圖象和性質,進一步研究方程有實根的情況,這是函數與方程思想的靈活應用。不等式恒成立問題,一般的要轉化成求函數的最值問題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

定義在上的函數同時滿足以下條件:
上是減函數,在上是增函數;
是偶函數;
處的切線與直線垂直.
(I)求函數的解析式;
(II)設,若存在,使,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=,其中a>0,
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若在區間上,f(x)>0恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調區間;(2)求上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知的圖象經過點,且在處的切線方程是.
(I)求的解析式;
(Ⅱ)求的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 (R).
(1) 若,求函數的極值;
(2)是否存在實數使得函數在區間上有兩個零點,若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數,
(1)求的極值點;
(2)若恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求證:函數上單調遞增;
(Ⅱ)若函數有三個零點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ln(1+x)-.
(1)求f(x)的極小值;   (2)若a、b>0,求證:lna-lnb≥1-.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视