精英家教網 > 高中數學 > 題目詳情

已知的圖象經過點,且在處的切線方程是.
(I)求的解析式;
(Ⅱ)求的單調遞增區間.

(I);(Ⅱ)單調遞增區間為

解析試題分析:(I)的圖象經過點,則

切點為,則的圖象經過點

綜上     故,    6分
(Ⅱ)
單調遞增區間為        12分
考點:本題主要考查導數的幾何意義,直線方程,應用導數研究函數的單調性。
點評:中檔題,心理問題屬于導數應用的基本問題,往往將單調性、極值、解析式等綜合在一起進行考查,應掌握好基本解題方法和步驟。切線的斜率等于函數在切點的導函數值。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的極值點與極值;
(2)設的導函數,若對于任意,且恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若p=2,求曲線處的切線方程;
(2)若函數在其定義域內是增函數,求正實數p的取值范圍;
(3)設函數,若在[1,e]上至少存在一點,使得成立,求實
數p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(I)若的極值點,求實數的值;
(II)若上為增函數,求實數的取值范圍;
(Ⅲ)當時,方程有實根,求實數的最大值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的最小值;
(2)若對所有都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)=(x∈R)在區間[-1,1]上是增函數.
(1)求實數a的值組成的集合A;
(2)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖像在點處的切線方程為.
(Ⅰ)求實數的值;
(Ⅱ)設是[)上的增函數, 求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,設函數
(1)若,求函數上的最小值
(2)判斷函數的單調性

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3+x-16,
(1)求曲線y=f(x)在點(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經過原點,求直線l的方程及切點坐標;

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视