精英家教網 > 高中數學 > 題目詳情

我們用部分自然數構造如下的數表:用aij(i≤j)表示第i行第j個數(i、j為正整數),使aij=aii=i;每行中的其余各數分別等于其“肩膀”上的兩個數之和(第一、二行除外,如圖),設第n(n為正整數)行中各數之和為B.

(Ⅰ)試寫出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關系(無需證明);

(Ⅱ)證明數列{bn+2}是等比數列,并求數列{bn}的通項公式bn

(Ⅲ)數列{bn}中是否存在不同的三項bp,bq,br(p,q,r為正整數)恰好成等差數列?若存在求出p,q,r的關系;若不存在,請說明理由.

答案:
解析:

  解:(1)

  可見:;;,2分

  猜測:(或) 4分

  (2)由(1),6分

  所以是以為首項,2為公比的等比數列,

  ∴,即

  (注:若考慮,且不討論,扣1分) 8分

  (3)若數列中存在不同的三項恰好成等差數列,

  不妨設,顯然,是遞增數列,則 9分

  即,于是 11分

  由知,,

  ∴等式的左邊為偶數,右邊為奇數,不成立,

  故數列{bn}中不存在不同的三項恰好成等差數列.13分


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網我們用部分自然數構造如下的數表:用aij(i≥j)表示第i行第j個數(i、j為正整數),使ai1=aii=i;每行中的其余各數分別等于其“肩膀”上的兩個數之和(第一、二行除外,如圖),設第n(n為正整數)行中各數之和為bn
(Ⅰ)試寫出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關系(無需證明);
(Ⅱ)證明數列{bn+2}是等比數列,并求數列{bn}的通項公式bn;
(Ⅲ)數列{bn}中是否存在不同的三項bp,bq,br(p、q、r為正整數)恰好成等差數列?若存在,求出p、q、r的關系;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年靜安區質檢文)我們用部分自然數構造如下的數表:用表示第行第個數(為正整數),使;每行中的其余各數分別等于其“肩膀”上的兩個數之和(第一、二行除外,如圖),設第為正整數)行中各數之和為.

(1)試寫出,并推測的關系(無需證明);

(2)證明數列是等比數列,并求數列的通項公式;

(3)數列中是否存在不同的三項為正整數)恰好成等差數列?若存在,求出的關系;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年萊陽一中期末文)(12分)

我們用部分自然數構造如下的數表:用表示第行第個數為整數,使;每行中的其余各數分別等于其‘肩膀”上的兩個數之和(第一、二行除外,如圖),設第 (為正整數)行中各數之和為。

(1)              試寫出并推測的關系(無需證明);

(2)              證明數列是等比數列,并求數列的通項公式

(3)              數列中是否存在不同的三項恰好成等差數列?若存在求出的關系;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

我們用部分自然數構造如下的數表:用aij(i≥j)表示第i行第j個數(i、j為正整數),使ail=aii=i ;每行中的其余各數分別等于其“肩膀”上的兩個數之和(第一、二行除外,如圖),設第n(n為正整數)行中各數之和為bn

   (1)試寫出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關系(無需證明);

   (2)證明數列{bn+2}是等比數列,并求數列{bn}的通項公式bn;

   (3)數列{ bn}中是否存在不同的三項bp,bq,br(p,q,r為正整數)恰好成等差數列?若存在求出P,q,r的關系;若不存在,請說明理由.

 


查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省蘇州市吳江市松陵高級中學高三(下)期中數學試卷(解析版) 題型:解答題

我們用部分自然數構造如下的數表:用aij(i≥j)表示第i行第j個數(i、j為正整數),使ai1=aii=i;每行中的其余各數分別等于其“肩膀”上的兩個數之和(第一、二行除外,如圖),設第n(n為正整數)行中各數之和為bn
(Ⅰ)試寫出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關系(無需證明);
(Ⅱ)證明數列{bn+2}是等比數列,并求數列{bn}的通項公式bn
(Ⅲ)數列{bn}中是否存在不同的三項bp,bq,br(p、q、r為正整數)恰好成等差數列?若存在,求出p、q、r的關系;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视