【題目】已知函數.
(1)當時,討論函數
的單調性.
(2)若函數有兩個零點,求
的取值范圍.
【答案】(1)答案見詳解;(2)
【解析】
(1)計算,討論
以及
,然后根據
的符號得出原函數的單調性.
(2)根據(1)的結果,利用函數的極值的符號,可得結果.
(1)函數的定義域為
由,
所以
由,
當時,則
所以函數在
單調遞增
當時,
令,則
或
令,則
所以函數在
單調遞增,在
單調遞減
當時
令,則
或
令,則
所以函數在
單調遞增,在
單調遞減
(2)由(1)可知
當時,
若時,
;若
時,
所以函數在
單調遞減,在
單調遞增
且,由函數
有兩個零點
所以
當時,函數
在
單調遞增,不符合題意
當時,
函數在
單調遞增,在
單調遞減
函數的極大值為
令
則,由
,所以
所以在
單調遞增,
所以
故函數有1個零點,不符合題意
當時,
函數在
單調遞增,在
單調遞減
函數的極大值為
所以函數有1個零點,不符合題意
綜上所述:
科目:高中數學 來源: 題型:
【題目】隨著生活水平的提高和人們對健康生活的重視,越來越多的人加入到健身運動中.國家統計局數據顯示,2019年有4億國人經常參加體育鍛煉.某健身房從參與健身的會員中隨機抽取100人,對其每周參與健身的天數和2019年在該健身房所有消費金額(單位:元)進行統計,得到以下統計表及統計圖:
平均每周健身天數 | 不大于2 | 3或4 | 不少于5 |
人數(男) | 20 | 35 | 9 |
人數(女) | 10 | 20 | 6 |
若某人平均每周進行健身天數不少于5,則稱其為“健身達人”.該健身房規定消費金額不多于1600元的為普通會員,超過1600元但不超過3200元的為銀牌會員,超過3200元的為金牌會員.
(1)已知金牌會員都是健身達人,現從健身達人中隨機抽取2人,求他們均是金牌會員的概率;
(2)能否在犯錯誤的概率不超過的前提下認為性別和是否為“健身達人”有關系?
(3)該健身機構在2019年年底針對這100位消費者舉辦一次消費返利活動,現有以下兩種方案:
方案一:按分層抽樣從普通會員、銀牌會員和金牌會員中共抽取25位“幸運之星”,分別給予188元,288元,888元的幸運獎勵;
方案二:每位會員均可參加摸獎游戲,游戲規則如下:摸獎箱中裝有5張形狀大小完全一樣的卡片,其中3張印跑步機圖案、2張印動感單車圖案,有放回地摸三次卡片,每次只能摸一張,若摸到動感單車的總數為2,則獲得100元獎勵,若摸到動感單車的總數為3,則獲得200元獎勵,其他情況不給予獎勵.規定每個普通會員只能參加1次摸獎游戲,每個銀牌會員可參加2次摸獎游戲,每個金牌會員可參加3次摸獎游戲(每次摸獎結果相互獨立).
請你比較該健身房采用哪一種方案時,在此次消費返利活動中的支出較少,并說明理由.
附:,其中
為樣本容量.
0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.636 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在多邊形中,四邊形
為等腰梯形,
,
,
,四邊形
為直角梯形,
,
.以
為折痕把等腰梯形
折起,使得平面
平面
,如圖2所示.
(1)證明:平面
.
(2)求直線與平面
所成角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】企業為了監控某種零件的一條流水生產線的產品質量,檢驗員從該生產線上隨機抽取100個零件,測量其尺寸
(單位:
)并經過統計分析,得到這100個零件的平均尺寸為10,標準差為0.5.企業規定:若
,該零件為一等品,企業獲利20元;若
且
,該零件為二等品,企業獲利10元;否則,該零件為不合格品,企業損失40元.
(1)在某一時刻內,依次下線10個零件,如果其中出現了不合格品,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查若這10個零件的尺寸分別為9.6,10.5,9.8,10.1,10.7,9.4,10.9,9.5,10,10.9,則從這一天抽檢的結果看,是否需要對當天的生產過程進行檢查?
(2)將樣本的估計近似地看作總體的估計通過檢驗發現,該零件的尺寸服從正態分布
.其中近似為樣本平均數,
近似為樣本方差
.
(i)從下線的零件中隨機抽取20件,設其中為合格品的個數為,求
的數學期望(結果保留整數)
(ii)試估計生產10000個零件所獲得的利潤.
附:若隨機變量服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左焦點為
,右頂點為
,離心率為
.已知
是拋物線
的焦點,
到拋物線的準線
的距離為
.
(I)求橢圓的方程和拋物線的方程;
(II)設上兩點
,
關于
軸對稱,直線
與橢圓相交于點
(
異于點
),直線
與
軸相交于點
.若
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數對任意的
,均有
,則稱函數
具有性質
.
(1)判斷下面兩個函數是否具有性質,并說明理由.①
;②
.
(2)若函數具有性質
,且
,求證:對任意
有
;
(3)在(2)的條件下,是否對任意均有
.若成立給出證明,若不成立給出反例.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校開展學生社會法治服務項目,共設置了文明交通,社區服務,環保宣傳和中國傳統文化宣講四個項目,現有該校的甲、乙、丙、丁4名學生,每名學生必須且只能選擇1項.
(1)求恰有2個項目沒有被這4名學生選擇的概率;
(2)求“環保宣傳”被這4名學生選擇的人數的分布列及其數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
為正三角形,
,
,
,點
在線段
的中點,點
為線段
的中點.
(1)在線段上是否存在點
,使得
平面
?若存在,指出點
的位置;若不存在,請說明理由.
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是拋物線
的焦點,過點
且與坐標軸不垂直的直線交拋物線于
、
兩點,交拋物線的準線于點
,其中
,
.過點
作
軸的垂線交拋物線于點
,直線
交拋物線于點
.
(1)求的值;
(2)求四邊形的面積
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com