精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)討論的單調性;

(2)若存在兩個極值點,,證明.

【答案】(1)見解析;(2)見解析

【解析】

(1)先求函數的定義域,求導后對分成三類,討論函數的單調區間.(2)由(1)知當且僅當存在兩個極值點,同時用韋達定理寫出這兩個極值點的關系.化簡,并利用導數求得上式表達式的單調區間以及最值,由此證得不等式成立.

(1)解:的定義域為,.

①當恒成立,上單調遞增;

②當,,,.

(。┊

;.

所以,上單調遞增,

上單調遞減.

(ⅱ)當,,

,.

所以上單調遞減,上單調遞增.

(2)證明:由(1)知當且僅當,存在兩個極值點.

因為的兩個極值點,滿足,所以

.

,

.

因為,所以,,,所以上單調遞減.

因為,所以,

從而.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知一條動直線3(m+1)x+(m-1)y-6m-2=0,

1)求證:直線恒過定點,并求出定點P的坐標;

2)若直線與xy軸的正半軸分別交于A,B兩點,O為坐標原點,是否存在直線滿足下列條件:①AOB的周長為12;②△AOB的面積為6,若存在,求出方程;若不存在,請說明理由.

3)若直線與xy軸的正半軸分別交于A,B兩點,當取最小值時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某次考試后,對全班同學的數學成績進行整理,得到表:

分數段

人數

5

15

20

10

將以上數據繪制成頻率分布直方圖后,可估計出本次考試成績的中位數是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直棱柱中, ,

.

(1)證明:直線平面

(2)求平面與平面所成的銳二面角的余弦.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知標準方程下的橢圓的焦點在軸上,且經過點,它的一個焦點恰好與拋物線的焦點重合.橢圓的上頂點為,過點的直線交橢圓于兩點,連接、,記直線的斜率分別為.

(1)求橢圓的標準方程;

(2)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(Ⅰ)當時,求函數的單調遞減區間;

(Ⅱ)若時,關于的不等式恒成立,求實數的取值范圍;

(Ⅲ)若數列滿足 ,記的前項和為,求證: .

【答案】I;(II;(III證明見解析.

【解析】試題分析:(Ⅰ)求出,在定義域內,分別令求得的范圍,可得函數增區間, 求得的范圍,可得函數的減區間;(Ⅱ)當時,因為,所以顯然不成立,先證明因此時, 上恒成立,再證明當時不滿足題意,從而可得結果;(III)先求出等差數列的前項和為,結合(II)可得,各式相加即可得結論.

試題解析:)由,得.所以

,解得(舍去),所以函數的單調遞減區間為 .

)由得,

時,因為,所以顯然不成立,因此.

,則,令,得.

時, , ,,所以,即有.

因此時, 上恒成立.

時, , 上為減函數,在上為增函數,

,不滿足題意.

綜上,不等式上恒成立時,實數的取值范圍是.

III)證明:由知數列的等差數列,所以

所以

由()得, 上恒成立.

所以. 將以上各式左右兩邊分別相加,得

.因為

所以

所以.

型】解答
束】
22

【題目】已知直線, (為參數, 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的直角坐標方程為.

(Ⅰ)將曲線的直角坐標方程化為極坐標方程;

(Ⅱ)設點的直角坐標為,直線與曲線的交點為、,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對任意實數a,b,c,給出下列命題:

①“”是“”的充要條件

②“是無理數”是“a是無理數”的充要條件;

③“”是“”的充分不必要條件

④“”是“”的必要不充分條件,

其中真命題的個數為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln (x+1)-x,a∈R.

(1)當a>0時,求函數f(x)的單調區間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫療機構免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統計,樣本分布被制作成如下圖表:

1)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取8人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?

2)估算該市80歲及以上長者占全市戶籍人口的百分比;

3)據統計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發放生活補貼,標準如下:

①80歲及以上長者每人每月發放生活補貼200元;

②80歲以下老人每人每月發放生活補貼120元;

③不能自理的老人每人每月額外發放生活補貼100元.

利用樣本估計總體,試估計政府執行此計劃的年度預算.(單位:億元,結果保留兩位小數)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视