精英家教網 > 高中數學 > 題目詳情
數列是遞增的等差數列,且,
(1)求數列的通項公式;
(2)求數列的前項和的最小值;
(3)求數列的前項和
(1) ;(2);(3)

試題分析:(1)這是等差數列的基礎題型,可直接利用基本量(列出關于的方程組)求解,也可利用等差數列的性質,這樣可先求出,然后再求出,得通項公式;(2)等差數列的前是關于的二次函數的形式,故可直接求出,然后利用二次函數的知識得到最小值,當然也可根據數列的特征,本題等差數列是首項為負且遞增的數列,故可求出符合的最大值,這個最大值就使得最小(如果,則都使最。;(3)由于前幾項為負,后面全為正,故分類求解(目的是根據絕對值定義去掉絕對值符號),特別是時,
,這樣可利用第(2)題的結論快速得出結論.
試題解析:(1) 由,得、是方程的二個根,,此等差數列為遞增數列,,,公差,      4分
(2),,
        8分
(3)由,解得,此數列前四項為負的,第五項為0,從第六項開始為正的.        10分
時,
.    12分
時,
.        14分項和公式;(3)絕對值與分類討論.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

數列{an}(n∈N)中,a1=0,當3an<n2時,an+1=n2,當3an>n2時,an+1=3an.求a2,a3,a4,a5,猜測數列的通項an并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列的前項和為
(1)若數列是首項與公差均為的等差數列,求;
(2)若且數列均是公比為的等比數列,
求證:對任意正整數,

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知直角的三邊長,滿足 
(1)已知均為正整數,且成等差數列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(2)已知成等比數列,若數列滿足,證明數列中的任意連續三項為邊長均可以構成直角三角形,且是正整數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知無窮數列的前項和為,且滿足,其中、是常數.
(1)若,,,求數列的通項公式;
(2)若,,且,求數列的前項和
(3)試探究、滿足什么條件時,數列是公比不為的等比數列.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設Sn為等差數列{an}的前n項和,已知S5=5,S9=27,則S7=       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知.我們把使乘積為整數的數n叫做“優數”,則在區間(1,2004)內的所有優數的和為(  )
A.1024B.2003 C.2026D.2048

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

等差數列的前項和記為,若,,則的最大值為      .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知等差數列{an}的前n項和為Sn,若a2=3,a6=11,則S7=(   )
A.91B.C.98D.49

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视