【題目】根據指令(
,
),機器人在平面上能完成下列動作,先原地旋轉弧度
(
為正時,按逆時針方向旋轉
,
為負時,按順時針方向旋轉
),再朝其面對的方向沿直線行走距離r;
(1)現機器人在平面直角坐標系的坐標原點,且面對x軸正方向,試給機器人下一個指令,使其移動到點;
(2)機器人在完成該指令后,發現在點處有一小球,正向坐標原點作勻速直線滾動,已知小球滾動的速度為機器人直線行走速度的2倍,若忽略機器人原地旋轉所需的時間,問機器人最快可在何處截住小球?并給出機器人截住小球所需的指令?(結果用反三角函數表示)
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線
:
,過點
的直線
的參數方程為:
(
為參數),直線
與曲線
分別交于
、
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)求線段的長和
的積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠有甲,乙兩個車間生產同一種產品,,甲車間有工人人,乙車間有工人
人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產完成的一件產品的事件(單位:
)進行統計,按照
進行分組,得到下列統計圖.
分別估算兩個車間工人中,生產一件產品時間少于
的人數
分別估計兩個車間工人生產一件產品時間的平均值,并推測車哪個車間工人的生產效率更高?
從第一組生產時間少于
的工人中隨機抽取
人,記抽取的生產時間少于
的工人人數為隨機變量
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的傾斜角為
,且經過點
.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足
,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;
(Ⅱ)設直線與曲線C交于P,Q兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 在回歸模型中,預報變量的值不能由解釋變量
唯一確定
B. 若變量,
滿足關系
,且變量
與
正相關,則
與
也正相關
C. 在殘差圖中,殘差點分布的帶狀區域的寬度越狹窄,其模型擬合的精度越高
D. 以模型去擬合一組數據時,為了求出回歸方程,設
,將其變換后得到線性方程
,則
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是圓柱的一條母線,已知BC過底面圓的圓心O,D是圓O上不與點B、C重合的任意一點,
:
(1)求直線AC與平面ABD所成角的大小;
(2)求點B到平面ACD的距離;
(3)將四面體ABCD繞母線AB旋轉一周,求由旋轉而成的封閉幾何體的體積;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高速公路隧道設計為單向三車道,每條車道寬4米,要求通行車輛限高5米,隧道全長1.5千米,隧道的斷面輪廓線近似地看成半個橢圓形狀(如圖所示).
(1)若最大拱高為6米,則隧道設計的拱寬
至少是多少米?(結果取整數)
(2)如何設計拱高和拱寬
,才能使半個橢圓形隧道的土方工程量最?(結果取整數)
參考數據:,橢圓的面積公式為
,其中
,
分別為橢圓的長半軸和短半軸長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com