【題目】某工廠有甲,乙兩個車間生產同一種產品,,甲車間有工人人,乙車間有工人
人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產完成的一件產品的事件(單位:
)進行統計,按照
進行分組,得到下列統計圖.
分別估算兩個車間工人中,生產一件產品時間少于
的人數
分別估計兩個車間工人生產一件產品時間的平均值,并推測車哪個車間工人的生產效率更高?
從第一組生產時間少于
的工人中隨機抽取
人,記抽取的生產時間少于
的工人人數為隨機變量
,求
的分布列及數學期望.
【答案】60,300;
乙車間工人生產效率更高;
見解析.
【解析】
(Ⅰ)由圖表分別計算出兩個車間生產一件產品時間少于的人數;
(Ⅱ)分別計算兩個車間工人生產一件產品時間的平均值,從而得到結果;
(Ⅲ)可取值為
.計算出相應的概率值,得到分布列與期望.
(Ⅰ)由題意得,第一組工人人,其中在
內(不含
)生產完成一件產品的有
人
甲車間工人中生產一件產品時間少于
的人數為
(人)
第二組工人人. 其中在
內(不含
)生產完成一件產品的有
人
乙車間工人中生產一件產品時間少于
的人數為
(人)
(Ⅱ)第一組平均時間為.
第二組平均時間為.
,
乙車間工人生產效率更高;
(Ⅲ)由題意得,第一組生產時間少于的工人有
人,從中抽取
人,其中生產時間少于
的有
人.
可取值為
.
.
,
,
的分布列為:
數學期望.
科目:高中數學 來源: 題型:
【題目】某樂園按時段收費,收費標準為:每玩一次不超過小時收費10元,超過
小時的部分每小時收費
元(不足
小時的部分按
小時計算).現有甲、乙二人參與但都不超過
小時,甲、乙二人在每個時段離場是等可能的。為吸引顧客,每個顧客可以參加一次抽獎活動。
(1) 用表示甲乙玩都不超過
小時的付費情況,求甲、乙二人付費之和為44元的概率;
(2)抽獎活動的規則是:顧客通過操作按鍵使電腦自動產生兩個[0,1]之間的均勻隨機數,并按如右所示的程序框圖執行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】檳榔原產于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區,在亞洲熱帶地區廣泛栽培.檳榔是重要的中藥材,在南方一些少數民族還有將果實作為一種咀嚼嗜好品,但其被世界衛生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,
兩個少數民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數字,葉表示個位數字).
(1)你能否估計哪個班級學生平均每周咀嚼檳榔的顆數較多?
(2)從班的樣本數據中隨機抽取一個不超過19的數據記為
,從
班的樣本數據中隨機抽取一個不超過21的數據記為
,求
的概率;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2﹣2x﹣4y+m=0.
(1)若圓C與直線l:x+2y﹣4=0相交于M、N兩點,且|MN|,求m的值;
(2)在(1)成立的條件下,過點P(2,1)引圓的切線,求切線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古達數學名著《九章算術-商功》中闡述:“斜解立方,得兩塹堵,斜解塹堵,其一為陽馬,一為鱉觸,陽馬居二,鱉屬居一.不易之率也。合兩鱉觸三而一,驗之以基,其形露矣,”若稱為“陽馬”的某幾何體的三視圖如圖所示 圖中網格紙上小正方形的邊長為. 則對該兒何體描述:
①四個側面首飾直角三角形
②最長的側棱長為
③四個側面中有三個側面是全等的直角三角形
④外接球的表面積為
其中正確的個數為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據指令(
,
),機器人在平面上能完成下列動作,先原地旋轉弧度
(
為正時,按逆時針方向旋轉
,
為負時,按順時針方向旋轉
),再朝其面對的方向沿直線行走距離r;
(1)現機器人在平面直角坐標系的坐標原點,且面對x軸正方向,試給機器人下一個指令,使其移動到點;
(2)機器人在完成該指令后,發現在點處有一小球,正向坐標原點作勻速直線滾動,已知小球滾動的速度為機器人直線行走速度的2倍,若忽略機器人原地旋轉所需的時間,問機器人最快可在何處截住小球?并給出機器人截住小球所需的指令?(結果用反三角函數表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四面體A-BCD中,有兩條棱的長為,其余棱的長度都為1;
(1)若,且
,求二面角A-BC-D的余弦值;
(2)求a的取值范圍,使得這樣的四面體是存在的;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的漸近線方程為
,一個焦點為
.
(1)求雙曲線的方程;
(2)過雙曲線上的任意一點
,分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形
,證明四邊形
的面積是一個定值;
(3)設直線與
在第一象限內與漸近線
所圍成的三角形
繞著
軸旋轉一周所得幾何體的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com