【題目】在極坐標系中,射線l:θ= 與圓C:ρ=2交于點A,橢圓Γ的方程為ρ2=
,以極點為原點,極軸為x軸正半軸建立平面直角坐標系xOy (Ⅰ)求點A的直角坐標和橢圓Γ的參數方程;
(Ⅱ)若E為橢圓Γ的下頂點,F為橢圓Γ上任意一點,求
的取值范圍.
【答案】解:(Ⅰ)射線l:θ= 與圓C:ρ=2交于點A(2,
),點A的直角坐標(
,1); 橢圓Γ的方程為ρ2=
,直角坐標方程為
+y2=1,參數方程為
(θ為參數);
(Ⅱ)設F( cosθ,sinθ),
∵E(0,﹣1),
∴ =(﹣
,﹣2),
=(
cosθ﹣
,sinθ﹣1),
∴
=﹣3cosθ+3﹣2(sinθ﹣1)=
sin(θ+α)+5,
∴
的取值范圍是[5﹣
,5+
]
【解析】(Ⅰ)射線l:θ= 與圓C:ρ=2交于點A(2,
),可得點A的直角坐標;求出橢圓直角坐標方程,即可求出橢圓Γ的參數方程;(Ⅱ)設F(
cosθ,sinθ),E(0,﹣1),求出相應的向量,即可求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】(2015·陜西)如圖,一橫截面為等腰梯形的水渠,因泥沙沉積,導致水渠截面邊界呈拋物線型(圖中虛線表示),則原始的最大流量與當前最大流量的比值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了鼓勵市民節約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用 (單位:元)關于月用電量
(單位:度)的函數解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求 的值;
(3)在滿足(2)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數據用該組區間的中點值代替,記 為該居民用戶1月份的用電費用,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+a|+|x﹣2|
(1)當a=﹣3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列幾個命題:
①函數是偶函數,但不是奇函數;
②方程的有一個正實根,一個負實根,
;
③是定義在
上的奇函數,當
時,
,則
時,
④函數的值域是
.
其中正確命題的序號是_____(把所有正確命題的序號都寫上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四邊形ABEF是正方形,且平面ABEF⊥平面ABCD,M為AF的中點, (I)求證:AC⊥BM;
(II)求異面直線CE與BM所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中石化集團獲得了某地深海油田區塊的開采權,集團在該地區隨機初步勘探了部分兒口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節約勘探費用.勘探初期數據資料見如表:
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(1)1~6號舊井位置線性分布,借助前5組數據求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;
(2)現準備勘探新井7(1,25),若通過1、3、5、7號井計算出的 的值(
精確到0.01)相比于(1)中b,a的值之差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井? (參考公式和計算結果:
)
(3)設出油量與勘探深度的比值k不低于20的勘探并稱為優質井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優質井的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com