精英家教網 > 高中數學 > 題目詳情

【題目】【2017廣東佛山二!磕潮kU公司針對企業職工推出一款意外險產品,每年每人只要交少量保費,發生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、、三類工種,根據歷史數據統計出三類工種的每賠付頻率如下表(并以此估計賠付概率).

(Ⅰ)根據規定,該產品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;

(Ⅱ)某企業共有職工20000人,從事三類工種的人數分布比例如圖,老板準備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

【答案】(Ⅰ)見解析;(Ⅱ)元.

【解析】試題分析:(I)設工種每份保單的保費,則需賠付時,收入為,根據概率分布可計算出保費的期望值為,令解得.同理可求得工種保費的期望值;(II)按照每個工種的人數計算出份數然后乘以(1)得到的期望值,即為總的利潤.

試題解析:

(Ⅰ)設工種的每份保單保費為元,設保險公司每單的收益為隨機變量,則的分布列為

保險公司期望收益為

根據規則

解得元,

設工種的每份保單保費為元,賠付金期望值為元,則保險公司期望利潤為元,根據規則,解得元,

設工種的每份保單保費為元,賠付金期望值為元,則保險公司期望利潤為元,根據規則,解得元.

(Ⅱ)購買類產品的份數為份,

購買類產品的份數為份,

購買類產品的份數為份,

企業支付的總保費為 元,

保險公司在這宗交易中的期望利潤為元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在銳角△ABC中,內角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大。
(2)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點,點M在線段PD上.

(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4 ,求b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AB=PA=1,AD= ,F是PB中點,E為BC上一點.

(1)求證:AF⊥平面PBC;
(2)當BE為何值時,二面角C﹣PE﹣D為45°.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣3|﹣|x﹣a|.
(1)當a=2時,解不等式f(x)≤﹣ ;
(2)若存在實數x,使得不等式f(x)≥a成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017山西孝義考前熱身】已知函數 (是常數),

(1)求函數的單調區間;

(2)當時,函數有零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中, 是自然對數的底數.

(Ⅰ)若上的增函數,求的取值范圍;

(Ⅱ)若,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天氣預報說,未來三天每天下雨的概率都是0.6,用1、2、3、4表示不下雨,用5、6、7、8、9、0表示下雨,利用計算機生成下列20組隨機數,則未來三天恰有兩天下雨的概率大約是
757 220 582 092 103 000 181 249 414 993
010 732 680 596 761 835 463 521 186 289.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视