精英家教網 > 高中數學 > 題目詳情

【題目】設全集為R,集合A={x|﹣3≤x<6},B={x|2<x<9}.
(1)求A∩B,A∪(RB);
(2)已知C={x|a<x<2a+1},若CA,求實數a的取值范圍.

【答案】
(1)解:集合A={x|﹣3≤x<6},B={x|2<x<9}.

由數軸得A∩B={x|2<x<6},

因為RB={x|x≤2或x≥9},

所以A∪(RB)={x|x<6或x≥9};


(2)解:C={x|a<x<2a+1},CA,

若C=,則a≥2a+1,即a≤﹣1,滿足題意,

若C≠,則 ,解得﹣1 ,

綜上可知,實數a的取值范圍為a


【解析】(1)直接利用交集求解A∩B,求出B的補集,然后求解A∪(RB);(2)利用子集關系列出不等式組求解即可.
【考點精析】關于本題考查的交、并、補集的混合運算,需要了解求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】統計全國高三學生的視力情況,得到如圖所示的頻率分布直方圖,由于不慎將部分數據丟失,但知道前4組的頻率成等比數列,后6組的頻率成等差數列.

(Ⅰ)求出視力在[4.7,4.8]的頻率;

(Ⅱ)現從全國的高三學生中隨機地抽取4人,用表示視力在[4.3,4.7]的學生人數,寫出的分布列,并求出的期望與方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為響應國家“精準扶貧,產業扶貧”的戰略,某市面向全市征召《扶貧政策》義務宣傳志愿者,從年齡在的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示.

(Ⅰ)求圖中的值;

(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人.記這3名志愿者中“年齡低于35歲”的人數為,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為自然對數的底數)有兩個極值點,則實數的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,函數g(x)=b﹣f(2﹣x),其中b∈R,若函數y=f(x)﹣g(x)恰有4個零點,則b的取值范圍是(
A.( ,+∞)
B.(﹣∞,
C.(0,
D.( ,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲、乙兩個班進行數學考試,按照大于等于120分為優秀,120分以下為非優秀統計成績后,得到如下列聯表:(單位:人).

已知在全部105人中隨機抽取1人成績是優秀的概率為.

(1)請完成上面的列聯表,并根據表中數據判斷,是否有的把握認為“成績與班級有關系”?

(2)若甲班優秀學生中有男生6名,女生4名,現從中隨機選派3名學生參加全市數學競賽,記參加競賽的男生人數為,求的分布列與期望.

附:

0.15

0.10

0.050

0.010

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進行高次開方運算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數表,并稱之為“開方作法本源”圖.下列數表的構造思路就源于“楊輝三角”.該表由若干行數字組成,從第二行起,每一行中的數字均等于其“肩上”兩數之和,表中最后一行僅有一個數,則這個數是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 的定義域為集合A,函數g(x)=( x(﹣1≤x≤0)的值域為集合B.
(1)求A∩B;
(2)若集合C=[a,2a﹣1],且C∪B=B,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某產品生產廠家生產一種產品,每生產這種產品x(百臺),其總成本為G(x)(萬元),其中固定成本為42萬元,且每生產1百臺的生產成本為15萬元(總成本=固定成本+生產成本).銷售收入R(x)(萬元)滿足 假定該產品產銷平衡(即生產的產品都能賣掉),根據上述規律,完成下列問題:
(1)寫出利潤函數y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)要使工廠有盈利,求產量x的范圍;
(3)工廠生產多少臺產品時,可使盈利最大?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视