【題目】已知向量,向量
,函數
.
(1)求的單調減區間;
(2)將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移
個單位長度,得到
的圖象,求函數
的解析式及其圖象的對稱中心.
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過
的部分按平價收費,超過
的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照
,
,
,
分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數為,求
的分布列與數學期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計
的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩條直線l1(3+m)x+4y=5﹣3m,l2 2x+(5+m)y=8.當m分別為何值時,l1與l2:
(1)相交?
(2)平行?
(3)垂直?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某大學自主招生的面試中,考生要從規定的6道科學題,4道人文題共10道題中,隨機抽取3道作答,每道題答對得10分,答錯或不答扣5分,已知甲、乙兩名考生參加面試,甲只能答對其中的6道科學題,乙答對每道題的概率都是,每個人答題正確與否互不影響.
(1)求考生甲得分的分布列和數學期望
;
(2)求甲,乙兩人中至少有一人得分不少于15分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內的圖象時,列表并填入了部分數據,如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 3 | 0 |
(1)請將上表空格中的數據在答卷的相應位置上,并求函數f(x)的解析式;
(2)若y=f(x)的圖象上所有點向左平移 個單位后對應的函數為g(x),求當x∈[﹣
,
]時,函數y=g(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下2×2的列聯表:
喜歡該項運動 | 不喜歡該項運動 | 總計 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
參照附表,以下結論正確是( )
A. 有以上的把握認為“愛好該項運動與性別有關”
B. 有以上的把握認為“愛好該項運動與性別無關”
C. 有以上的把握認為“愛好該項運動與性別有關”
D. 有以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從參加某次高中英語競賽的學生中抽出100名,將其成績整理后,繪制頻率分布直方圖(如圖所示).其中樣本數據分組區間為: ,
,
,
,
,
.
(Ⅰ)試求圖中的值,并計算區間
上的樣本數據的頻率和頻數;
(Ⅱ)試估計這次英語競賽成績的眾數、中位數及平均成績(結果精確到).
注:同一組數據用該組區間的中點值作為代表
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將向量=(
,
),
=(
,
),…
=(
,
)組成的系列稱為向量列{
},并定義向量列{
}的前
項和
.如果一個向量列從第二項起,每一項與前一項的差都等于同一個向量,那么稱這樣的向量列為等差向量列。若向量列{
}是等差向量列,那么下述四個向量中,與
一定平行的向量是 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,橢圓E的中心為坐標原點,焦點在
軸上,且
在拋物線
的準線上,點
是橢圓E上的一個動點,
面積的最大值為
.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過焦點作兩條平行直線分別交橢圓E于
四個點.
①試判斷四邊形能否是菱形,并說明理由;
②求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com