精英家教網 > 高中數學 > 題目詳情

【題目】已知函數的圖象關于直線對稱,且圖象上相鄰最高點的距離為

⑴求的解析式;

⑵將的圖象向右平移個單位,得到的圖象若關于的方程上有唯一解,求實數的取值范圍.

【答案】(1)(2)

【解析】試題分析:

(1)利用題意首先求得 的值,然后求解 的值即可求得的解析式;

(2)首先求得函數 的解析式,然后結合函數在區間 上的性質即可求解實數的取值范圍.

試題解析:

(1)因為的圖象上相鄰最高點的距離為,所以的最小正周期,從而

的圖象關于直線對稱,所以,因為 ,所以,所以

所以

(2)通過平移,得

方程可看成函數和函數的圖象在上有且只有個交點,

當/span>時,,為使直線與函數的圖象在上有且只有個交點,結合上的圖象,只需 ,

解得

即實數的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知, 對邊分別為,已知.

1)若的面積等于,求;

2)若,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下表提供了某公司技術升級后生產產品過程中記錄的產量(噸)與相應的成本(萬元)的幾組對照數據:

(1)請畫出上表數據的散點圖;

(2)請根據上表提供的數據,用最小二乘法求出的回歸直線方程;

(3)已知該公司技術升級前生產100噸產品的成本為90萬元.試根據(2)求出的回歸直線方程,預測技術升級后生產100噸產品的成本比技術升級前約降低多少萬元?

(附: , ,其中為樣本平均值)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l與圓O:相交于A,B兩個不同的點,且A,B.

1面積最大時,求m的取值,并求出的長度

2判斷是否為定值;若是,求出定值的大小;若不是,說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解高中生上學使用手機情況,調查者進行了如下的隨機調查:調查者向被調查者提出兩個問題:(1)你的學號是奇數嗎?(2)你上學時是否經常帶手機?要求被調查者背對著調查人員拋擲一枚硬幣,如果出現正面,就回答第一問題,否則就回答第二個問題.被調查者不必告訴調查人員自己回答的是哪一個問題,只需回答“是”或“不是”,因為只有被調查者本人知道回答了哪一個問題,所以都如實地做了回答.結果被調查的800人(學號從1至800)中有260人回答了“是”.由此可以估計這800人中經常帶手機上學的人數是_________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以軸正半軸為始邊的銳角和鈍角的終邊分別與單位圓交于點,若點的橫坐標是,點的縱坐標是.

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數的單調遞增區間;

(2)將函數的圖像向左平移個單位后,再將圖像上各點的橫坐標伸長到原來的倍,縱坐標不變,得到函數的圖像,求的最大值及取得最大值時的的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線 的參數方程為為參數).

(1)直線且與曲線相切,求直線的極坐標方程;

(2)點與點關于軸對稱,求曲線上的點到點的距離的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線 的方程為,點的坐標為.

)求過點且與直線平行的直線方程;

)求過點且與直線垂直的直線方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视