如圖,在三棱錐S—ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°。
(1)求證:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;
(1)詳見解析,(2)
解析試題分析:(1)要證面面垂直,需證線面垂直 觀察的證明方向為面
由
是
的中點,易得
,所以證明方向轉為
平面
,又
,所以只需找出
,而這由
平面
可得,(2)求二面角,關鍵問題在作出二面角的平面角 作二面角的平面角方法主要是找出二面角棱的垂面,而這在題中易得,即
平面
異面直線所成角關鍵找平移,所以過點
作
于
點,使直線
平移到直線
在把空間角轉化為平面角后,只需找三角形解出即可
試題解析:解(1)因為平面
,
,又因為
所以,
,
平面
,
又因為是
的中點
所以,
面
,所以面
面
5分
(2)因為平面
,
所以,從而
為二面角
的平面角,
因為直線與直線
所成的角為
所以過點作
于
點,連結
則在
中,由勾股定理得
在中,
在中,
考點:面面垂直判定,二面角,直線與直線所成角
科目:高中數學 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點,F是AB的中點,AC=BC=1,AA1=2.
(1)求證:CF∥平面AB1E;
(2)求三棱錐C-AB1E在底面AB1E上的高.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
直三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(1)求證:直線AB1⊥平面A1BD.
(2)求二面角A-A1D-B正弦值的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.
(Ⅰ)若M為PA中點,求證:AC∥平面MDE;
(Ⅱ)求平面PAD與PBC所成銳二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。
(Ⅰ)求證:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com