【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
.
(1)求cosA的值;
(2)若a=4 ,b=5,求向量
在
方向上的投影.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣mx+m,m、x∈R.
(1)若關于x的不等式f(x)>0的解集為R,求m的取值范圍;
(2)若實x1 , x2數滿足x1<x2 , 且f(x1)≠f(x2),證明:方程f(x)= [f(x1)+f(x2)]至少有一個實根x0∈(x1 , x2);
(3)設F(x)=f(x)+1﹣m﹣m2 , 且|F(x)|在[0,1]上單調遞增,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有下列命題:
①雙曲線與橢圓
有相同的焦點;
②“”是“2x2﹣5x﹣3<0”必要不充分條件;
③“若xy=0,則x、y中至少有一個為0”的否命題是真命題.;
④若p是q的充分條件,r是q的必要條件,r是s的充要條件,則s是p的必要條件;
其中是真命題的有: .(把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+2sinα(α∈(0,))的導函數f′(x),若存在x0<1使得f′(x0)=f(x0)成立,則實數α的取值范圍為( )
A.( ,
)
B.(0,)
C.( ,
)
D.(0,)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,拋物線的準線為
,取過焦點
且平行于
軸的直線與拋物線交于不同的兩點
,過
作圓心為
的圓,使拋物線上其余點均在圓外,且
.
(Ⅰ)求拋物線和圓
的方程;
(Ⅱ)過點作直線
與拋物線
和圓
依次交于
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式.
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com