【題目】已知平面向量 =(1,x),
=(2x+3,﹣x)(x∈R).
(1)若 ∥
,求|
﹣
|
(2)若 與
夾角為銳角,求x的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是
( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對任意一個確定的二面角α﹣l﹣β,a和b是空間的兩條異面直線,在下面給出的四個條件中,能使a和b所成的角也確定的是( )
A.a∥a且b∥β
B.a∥a且b⊥β
C.aα且b⊥β
D.a⊥α且b⊥β
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,其前n項的和為Sn,且對任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n.
(1)求的值;
(2)求證:{an}為等比數列;
(3)已知數列{cn},{dn}滿足|cn|=|dn|=an,p(p≥3)是給定的正整數,數列{cn},{dn}的前p項的和分別為Tp,Rp,且Tp=Rp,求證:對任意正整數k(1≤k≤p),ck=dk.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
.
(1)求cosA的值;
(2)若a=4 ,b=5,求向量
在
方向上的投影.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人上午7時乘船出發,以勻速海里/小時
從
港前往相距50海里的
港,然后乘汽車以勻速
千米/小時(
)自
港前往相距
千米的
市,計劃當天下午4到9時到達
市.設乘船和汽車的所要的時間分別為
、
小時,如果所需要的經費
(單位:元)
(1)試用含有、
的代數式表示
;
(2)要使得所需經費最少,求
和
的值,并求出此時的費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是2017年第一季度五省情況圖,則下列陳述正確的是( )
①2017年第一季度 總量和增速均居同一位的省只有1個;
②與去年同期相比,2017年第一季度五個省的總量均實現了增長;
③去年同期的總量前三位是江蘇、山東、浙江;
④2016年同期浙江的總量也是第三位.
A. ①② B. ②③④ C. ②④ D. ①③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com