【題目】已知f(x)=2x3﹣6x2+m(m為常數),在[﹣2,2]上有最大值3,那么此函數在[﹣2,2]上的最小值為 .
【答案】﹣37
【解析】解:由已知,f′(x)=6x2﹣12x,有6x2﹣12x≥0得x≥2或x≤0,
因此當x∈[2,+∞),(﹣∞,0]時f(x)為增函數,在x∈[0,2]時f(x)為減函數,
又因為x∈[﹣2,2],
所以得
當x∈[﹣2,0]時f(x)為增函數,在x∈[0,2]時f(x)為減函數,
所以f(x)max=f(0)=m=3,故有f(x)=2x3﹣6x2+3
所以f(﹣2)=﹣37,f(2)=﹣5
因為f(﹣2)=﹣37<f(2)=﹣5,所以函數f(x)的最小值為f(﹣2)=﹣37.
答案為:﹣37
【考點精析】解答此題的關鍵在于理解函數的最大(小)值與導數的相關知識,掌握求函數在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】光線從點A(-3,4)射出,到x軸上的點B后,被x軸反射到y軸上的點C,又被y軸反射,這時反射光線恰好過點D(-1,6),求光線BC所在直線的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=x2lnx,g(x)=ax3﹣x2 .
(1)求函數f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求實數a的取值范圍;
(3)若使方程f(x)﹣g(x)=0在x∈[ ,en](其中e=2.7…為自然對數的底數)上有解的最小a的值為an , 數列{an}的前n項和為Sn , 求證:Sn<3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若a,b是函數f(x)=x2﹣px+q(p>0,q>0)的兩個不同的零點,且a,b,﹣2這三個數可適當排序后成等差數列,也可適當排序后成等比數列,則p+q的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從橢圓上一點
向
軸作垂線,垂足恰好為橢圓的左焦點
,
是橢圓的右頂點,
是橢圓的上頂點,且
.
(1)求該橢圓的方程;
(2)不過原點的直線與橢圓
交于
兩點,已知
,直線
,
的斜率
,
成等比數列,記以
,
為直徑的圓的面積分別為
,求證;
為定值,并求出定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com