【題目】已知函數f(x)=loga(1+x),g(x)=loga(1﹣x),其中a>0且a≠1,設h(x)=f(x)﹣g(x)
(1)求函數h(x)的定義域,判斷h(x)的奇偶性并說明理由
(2)解不等式h(x)>0.
【答案】
(1)解:∵函數f(x)=loga(1+x),g(x)=loga(1﹣x),其中a>0且a≠1,
∴h(x)=f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)
解 得,﹣1<x<1
∴h(x)的定義域為(﹣1,1);
∵h(﹣x)=loga(1﹣x)﹣loga(1+x)=﹣h(x)
∴h(x)為奇函數;
(2)解:由h(x)>0得,loga(1+x)>loga(1﹣x);
①若a>1,則:
解得:0<x<1
②若0<a<1,則:
解得:∴﹣1<x<0
∴a>1時,使h(x)>0的x的取值范圍為(0,1),0<a<1時,x的取值范圍為(﹣1,0).
【解析】(1)由已知可得h(x)=loga(1+x)﹣loga(1﹣x),進而可求函數的定義域,判斷函數的奇偶性;(2)由h(x)>0得,loga(1+x)>loga(1﹣x);對底數進行分類討論,可得不同情況下不等式的解集.
【考點精析】本題主要考查了對數函數的單調性與特殊點的相關知識點,需要掌握過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數;0>a>1時在(0,+∞)上是減函數才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】在棱長都相等的四面體P-ABC中,D、E、F分別是AB、BC、CA的中點,則下面四個結論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有一圓心角為 ,半徑為12cm的扇形鐵皮(如圖).P,Q是弧AB上的動點且劣弧
的長為2πcm,過P,Q分別作與OA,OB平行或垂直的線,從扇形上裁剪出多邊形OHPRQT,將該多邊形面積表示為角α的函數,并求出其最大面積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為激勵創新,計劃逐年加大研發資金投入,若該公司2015年全年投入研發資金超過130萬元,在此基礎上,每年投入的研發資金比上一年增長12%,則該公司全年投入的研發資金開始超過200萬元的年份是年.(參考數據:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=1+x﹣ +
﹣
+…+
;g(x)=1﹣x+
﹣
+
﹣…﹣
;設函數F(x)=[f(x+3)]2015[g(x﹣4)]2016 , 且函數F(x)的零點均在區間[a,b](a<b,a,b∈Z)內,則b﹣a的最小值為( )
A.8
B.9
C.10
D.11
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)是定義在R上的函數,滿足f(x)=f(4﹣x),且對任意x1 , x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,則滿足f(2﹣x)=f( )的所有x的和為( )
A.﹣3
B.﹣5
C.﹣8
D.8
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com