【題目】如圖,在四棱錐中,
平面
.
(1)求證: 平面
;
(2)若為線段
的中點,且過
三點平面與線段
交于點
,確定的位置,說明理由;
并求三棱錐的高.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1+x),g(x)=loga(1﹣x),其中a>0且a≠1,設h(x)=f(x)﹣g(x)
(1)求函數h(x)的定義域,判斷h(x)的奇偶性并說明理由
(2)解不等式h(x)>0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax,(e為自然對數的底數). (Ⅰ)討論f(x)的單調性;
(Ⅱ)若對任意實數x恒有f(x)≥0,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,P,Q分別是AA1 , B1C1上的點,且AP=3A1P,B1C1=4B1Q.
(1)求證:PQ∥平面ABC1;
(2)若AB=AA1 , BC=3,AC1=3,BC1= ,求證:平面ABC1⊥平面AA1C1C.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點. (Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.
(1)求f( )的值;
(2)求函數f(x)的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長為6的正方體ABCD﹣A1B1C1D1中,M是BC的中點,點P是面DCC1D1內的動點,且滿足∠APD=∠MPC,則三棱錐P﹣BCD的體積最大值是( )
A.36
B.12
C.24
D.18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】底面是正多邊形,頂點在底面的射影是底面中心的棱錐叫正棱錐.已知同底的兩個正三棱錐內接于同一個球.已知兩個正三棱錐的底面邊長為a,球的半徑為R.設兩個正三棱錐的側面與底面所成的角分別為α、β,則tan(α+β)的值是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com