【題目】設集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(CUT)=( 。
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}
科目:高中數學 來源: 題型:
【題目】如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為67°,30°,此時氣球的高是46m,則河流的寬度BC約等于m.(用四舍五入法將結果精確到個位.參考數據:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80, ≈1.73)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
經過點
,左右焦點分別為
、
,圓
與直線
相交所得弦長為2.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是橢圓
上不在
軸上的一個動點,
為坐標原點,過點
作
的平行線交橢圓
于
、
兩個不同的點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為
,離心率
,短軸長為2.
(1)求橢圓的方程;
(2)點為橢圓上的一動點(非長軸端點),
的延長線與橢圓交于
點,
的延長線與橢圓交于
點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題p:關于x的方程x2+ax+2=0無實根,命題q:函數f(x)=logax在(0,+∞)上單調遞增,若“p∧q”為假命題,“p∨q”真命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某淘寶店經過對春節七天假期的消費者進行統計,發現在金額不超過1000元的消費者中男女比例為,該店按此比例抽取了100名消費者進行進一步分析,得到下表女性消費情況:
消費金額(元) | |||||
人數 | 5 | 10 | 15 | 47 | 3 |
男性消費情況:
消費金額(元) | |||||
人數 | 2 | 3 | 10 | 3 | 2 |
若消費金額不低于600元的網購者為“網購達人”,低于600元的網購者為“非網購達人”
(1)分別計算女性和男性消費的平均數,并判斷平均消費水平高的一方“網購達人”出手是否更闊綽?
(2)根據以上統計數據填寫如下列聯表,并回答能否在犯錯誤的概率不超過
的前提下認為“是否為‘網購達人’與性別有關”.
女性 | 男性 | 合計 | |
“網購達人” | |||
“非網購達人” | |||
合計 |
附: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com