精英家教網 > 高中數學 > 題目詳情

【題目】某校為了了解學生對周末家庭作業量的態度,擬采用分層抽樣的方法分別從高一、高二、高三的高中生中隨機抽取一個容量為200的樣本進行調查,已知從700名高一、高二學生中共抽取了140名學生,那么該校有高三學生名.

【答案】300
【解析】解:∵從700名高一、高二學生中共抽取了140名學生,
∴每個個體被抽到的概率是 = ,
高三年級有(200﹣140)÷ =300,
所以答案是:300.
【考點精析】通過靈活運用分層抽樣,掌握先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若a、b、c是常數,則“a>0且b2﹣4ac<0”是“對任意x∈R,有ax2+bx+c>0”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】先把正弦函數y=sinx圖象上所有的點向左平移 個長度單位,再把所得函數圖象上所有的點的縱坐標縮短到原來的 倍(橫坐標不變),再將所得函數圖象上所有的點的橫坐標縮短到原來的 倍(縱坐標不變),則所得函數圖象的解析式是(
A.y=2sin( x+
B.y= sin(2x﹣
C.y=2sin( x﹣
D.y= sin(2x+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】=(sinx,cosx), =(sinx,sinx), =(﹣1,0)

(1)若x= ,求 的夾角θ;
(2)若x∈[﹣ , ],f(x)=λ 的最大值為 ,求λ.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某社區居民的家庭年收入所年支出的關系,隨機調查了該社區5戶家庭,得到如下統計數據表:

收入x (萬元)

8.2

8.6

10.0

11.3

11.9

支出y (萬元)

6.2

7.5

8.0

8.5

9.8

據上表得回歸直線方程 = x+ ,其中 =0.76, = ,據此估計,該社區一戶收入為15萬元家庭年支出為(
A.11.4萬元
B.11.8萬元
C.12.0萬元
D.12.2萬元

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:
①存在實數x,使sinx+cosx= ;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數y=sin( x+ )是偶函數;
④函數y=sin2x的圖象向左平移 個單位,得到函數y=cos2x的圖象.
其中正確命題的序號是(把正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的正方形,側面PAD⊥底面ABCD,且PA=PD= AD.
(1)求證:平面PAB⊥平面PDC
(2)在線段AB上是否存在一點G,使得二面角C﹣PD﹣G的余弦值為 .若存在,求 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,則以下步驟可以得到函數f(x)的圖象的是(

A.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的2倍,然后再向左平移 個單位
B.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的2倍,然后再向右平移 個單位
C.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的 ,然后再向右平移 個單位
D.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的 ,然后再向左平移 個單位

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= .(x>0)
(1)函數f(x)在區間(0,+∞)上是增函數還是減函數?證明你的結論;
(2)若當x>0時,f(x)> 恒成立,求正整數k的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视