【題目】已知函數f(x)=cosx+ax2﹣1,a∈R.
(1)當a=0時,求函數f(x)在 處的切線方程;
(2)當a=1時,求函數f(x)在[﹣π,π]上的最大值和最小值;
(3)若對于任意的實數x恒有f(x)≥0,求實數a的取值范圍.
【答案】
(1)解:a=0時,f(x)=cosx﹣1,f′(x)=﹣sinx,
∴f′( )=﹣1,f(
)=﹣1,
故切線方程是:y+1=﹣(x﹣ ),
即x+y+ +1=0
(2)解:當a=1時,f(x)=cosx+x2﹣1,f(﹣x)=f(x),是偶函數,
函數f(x)在[﹣π,π]上的最大值及最小值,
即為f(x)在[0,π]上的最大值及最小值,
此時f(x)=cosx+x2﹣1,導數為f′(x)=2x﹣sinx,0≤x≤π,
令g(x)=2x﹣sinx,導數為2﹣cosx>0,即g(x)遞增,
即有g(x)≥g(0)=0,則f′(x)≥0,即f(x)在[0,π]遞增,
x=0時,取得最小值0,x=π時,取得最大值π2﹣2,
則有函數f(x)在[﹣π,π]上的最大值π2﹣2,
最小值為0
(3)解:對于任意的實數x恒有f(x)≥0,即有cosx+ax2﹣1≥0,
即ax2≥1﹣cosx≥0,顯然a≥0,
x=0時,顯然成立;由偶函數的性質,只要考慮x>0的情況.
當x>0時,a≥ =
,即為2a≥(
)2,
由x>0,則 =t>0,考慮sint﹣t的導數為cost﹣1≤0,
即sint﹣t遞減,即有sint﹣t<0,即sint<t,
則有 <1,故(
)2<1,
即有2a≥1,解得a≥ .
則實數a的取值范圍為[ ,+∞).
【解析】(1)求出函數的導數,計算f( ),f′(
)的值,代入切線方程整理即可;(2)當a=1時,函數f(x)在[﹣π,π]上的最大值及最小值,即為f(x)在[0,π]上的最大值及最小值,求出導數,求得單調性,即可得到最值;(3)對于任意的實數x恒有f(x)≥0,即有cosx+ax2﹣1≥0,即ax2≥1﹣cosx≥0,顯然a≥0,運用參數分離和二倍角公式可得2a≥(
)2 , 求出右邊函數的范圍,即可得到a的范圍.
【考點精析】解答此題的關鍵在于理解函數的最大(小)值與導數的相關知識,掌握求函數在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+4[sin(θ+ )]x﹣2,θ∈[0,2π]].
(1)若函數f(x)為偶函數,求tanθ的值;
(2)若f(x)在[﹣ ,1]上是單調函數,求θ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,為測量山高MN,選擇A和另一座山的山頂C為測量觀測點.從A點測得 M點的仰角∠MAN=60°,C點的仰角∠CAB=45°以及∠MAC=75°;從C點測得∠MCA=60°.已知山高BC=100m,則山高MN=m.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為考察高中生的性別與是否喜歡數學課程之間的關系,在某城市的某校高中生中,從男生中隨機抽取了70人,從女生中隨機抽取了50人,男生中喜歡數學課程的占,女生中喜歡數學課程的占
,得到如下列聯表.
喜歡數學課程 | 不喜歡數學課程 | 合計 | |
男生 | |||
女生 | |||
合計 |
(1)請將列聯表補充完整;試判斷能否有90%的把握認為喜歡數學課程與否與性別有關;
(2)從不喜歡數學課程的學生中采用分層抽樣的方法,隨機抽取6人,現從6人中隨機抽取2人,求抽取的學生中至少有1名是女生的概率..
附:,其中
.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: (a>b>0)的離心率為
,且過點(1,
).過橢圓C的左頂點A作直線交橢圓C于另一點P,交直線l:x=m(m>a)于點M.已知點B(1,0),直線PB交l于點N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若MB是線段PN的垂直平分線,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=﹣ x3+
x2+2ax.
(1)當a=1時,求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在( ,+∞)上存在單調遞增區間,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在
軸上,左頂點為
,左焦點為
,點
在橢圓
上,直線
與橢圓
交于
,
兩點,直線
,
分別與
軸交于點
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經過定點?若經過,求出定點的坐標;若不經過,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com