【題目】如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=2,PD=
,M為棱PB的中點.
(1)證明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
【答案】(1) (2)
【解析】試題分析:(1)連結,取
的中點
,連結
,由已知條件推導出
,
,由此能證明
平面
;(2)以
為原點,
為
軸,建立空間直角坐標系,利用向量法能求出二面角
的余弦值.
試題解析:(1)連接BD,取DC的中點G,連接BG,
由此知DG=GC=BG=1,即△DBC為直角三角形,
∴BC⊥BD.又PD⊥平面ABCD,∴BC⊥PD,又PD∩BD=D,
∴BC⊥平面BDP,∴BC⊥DM.
又PD=BD=,PD⊥BD,M為PB的中點,
∴DM⊥PB,∵PB∩BC=B,
∴DM⊥平面PBC。
以D為坐標原點,射線DA,DC,DP分別為x軸、y軸、z軸的正半軸,建立如圖所示的直角坐標系D-xyz,
則A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,),
從而,設
是平面ADM的法向量,
則,即2∴可取
.
同理,設是平面CDM的法向量,則
,即2
∴可取,∴
,
顯然二面角A-DM-C的大小為鈍角,∴所以二面角A-DM-C的余弦值為.
科目:高中數學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,底面為正三角形,側棱垂直底面,AB=2,AA1=6.若E,F分別是棱BB1 , CC1上的點,且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為( )
A.﹣
B.
C.﹣
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業務,每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不少于900人運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中學生綜合素質評價某個維度的測評中,分“優秀、合格、尚待改進”三個等級進行學生互評,某校高二年級有男生500人,女生400人,為了了解性別對維度測評結果的影響,采用分層抽樣方法從高二年級抽取了45名學生的測評結果,并作出頻率統計表如表: 表一:男生測評結果統計
等級 | 優秀 | 合格 | 尚待改進 |
頻數 | 15 | x | 5 |
表二:女生測評結果統計
等級 | 優秀 | 合格 | 尚待改進 |
頻數 | 15 | 3 | y |
參考數據:
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(參考公式: ,其中n=a+b+c+d).
(1)計算x,y的值;
(2)由表一表二中統計數據完成2×2列聯表,并判斷是否有90%的把握認為“測評結果優秀與性別有關”.
男生 | 女生 | 總計 | |
優秀 | |||
非優秀 | |||
總計 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(x﹣2)﹣ ,(a為常數且a≠0),若f(x)在x0處取得極值,且x0[e+2,e2+2],而f(x)≥0在[e+2,e2+2]上恒成立,則a的取值范圍( )
A.a≥e4+2e2
B.a>e2+2e
C.a≥e2+2e
D.a>e4+2e2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,若方程f(x)=a有四個不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+
的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校舉行運動會,其中三級跳遠的成績在8.0米(四舍五入,精確到0.1米)以上的進入決賽,把所得數據進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數是7.
(Ⅰ)求進入決賽的人數;
(Ⅱ)若從該校學生(人數很多)中隨機抽取兩名,記X表示兩人中進入決賽的人數,求X的分布列及數學期望;
(Ⅲ)經過多次測試后發現,甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現甲,乙各跳一次,求甲比乙遠的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com