已知各項均為非負整數的數列
,滿足
,
.若存在最小的正整數
,使得
,則可定義變換
,變換
將數列
變為數列
.設
,
.
(Ⅰ)若數列,試寫出數列
;若數列
,試寫出數列
;
(Ⅱ)證明存在唯一的數列,經過有限次
變換,可將數列
變為數列
;
(Ⅲ)若數列,經過有限次
變換,可變為數列
.設
,
,求證
,其中
表示不超過
的最大整數.
解:(Ⅰ)若,則
;
;
;
;
.
若,則
;
;
;
.
………4分
(Ⅱ)先證存在性,若數列滿足
及
,則定義變換
,變換
將數列
變為數列
:
.
易知和
是互逆變換.
………5分
對于數列連續實施變換
(一直不能再作
變換為止)得
,
則必有(若
,則還可作變換
).反過來對
作有限次變換
,即可還原為數列
,因此存在數列
滿足條件.
下用數學歸納法證唯一性:當是顯然的,假設唯一性對
成立,考慮
的情形.
假設存在兩個數列及
均可經過有限次
變換,變為
,這里
,
若,則由變換
的定義,不能變為
;
若,則
,經過一次
變換,有
由于,可知
(至少3個1)不可能變為
.
所以,同理
令
,
,
則,所以
,
.
因為,
,
故由歸納假設,有,
.
再由與
互逆,有
,
,
所以,
,從而唯一性得證.
………9分
(Ⅲ)顯然,這是由于若對某個
,
,則由變換的定義可知,
通過變換,不能變為
.由變換
的定義可知數列
每經過一次變換,
的值或者不變,或者減少
,由于數列
經有限次變換
,變為數列
時,有
,
,
所以為整數
,于是
,
,
所以為
除以
后所得的余數,即
.………13分
【解析】略
科目:高中數學 來源: 題型:
| ||
n個 |
| ||
n個 |
Sm |
m+1 |
Sm |
m+1 |
Sm |
m+1 |
查看答案和解析>>
科目:高中數學 來源:北京市朝陽區2012屆高三3月第一次綜合練習數學理科試題 題型:044
已知各項均為非負整數的數列A0∶a0,a1,…,an(n∈N*),滿足a0=0,a1+…+an=n.若存在最小的正整數k,使得ak=k(k≥1),則可定義變換T,變換T將數列A0變為數列T(A0)∶a0+1,a1+1,…,ak-1+1,0,ak+1,…,an.設Ai+1=T(Ai),i=0,1,2….
(Ⅰ)若數列A0∶0,1,1,3,0,0,試寫出數列A5;若數列A4∶4,0,0,0,0,試寫出數列A0;
(Ⅱ)證明存在唯一的數列A0,經過有限次T變換,可將數列A0變為數列;
(Ⅲ)若數列A0,經過有限次T變換,可變為數列.設Sm=am+am+1+…+an,m=1,2,…,n,求證am=Sm-[
](m+1),其中[
]表示不超過
的最大整數.
查看答案和解析>>
科目:高中數學 來源:2012年北京市朝陽區高考數學一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2012年北京市朝陽區高考數學一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com