已知拋物線的焦點為
,準線為
,點
為拋物線C上的一點,且
的外接圓圓心到準線的距離為
.
(I)求拋物線C的方程;
(II)若圓F的方程為,過點P作圓F的2條切線分別交
軸于點
,求
面積的最小值時
的值.
(I);(II)
.
解析試題分析:(I)先求圓心縱坐標,再由圓心到準線的距離,可求的值,從而得拋物線的方程;(II)先設過點
斜率存在的直線方程,根據直線與圓
相切,可得兩切線的斜率關系,然后得
兩點坐標,可得
,然后再求三角形PMN的面積,再利用導數判斷面積的單調性而求最小值,再得
的值.
試題解析:(I)的外接圓的圓心在直線OF,FP的中垂線交點上,且直線OF的中垂線為直線
,則圓心的縱坐標為
, 1分
故到準線的距離為. 2分
從而p=2,即C的方程為. 5分
(II)設過點P斜率存在的直線為,則點F(0,1)到直線的距離
。 7分
令d=1,則,所以
。
設兩條切線PM,PN的斜率分別為,則
,
, 9分
且直線PM:,直線PN:
,故
,
因此 11分
所以 12分
設,則
令,則
.
在
上單點遞減,在
上單調遞增,因此
從而,此時
. 15分
考點:1、拋物線的方程及性質;2、直線與圓的位置關系;3、直線與拋物線相交及與導數的綜合應用
科目:高中數學 來源: 題型:解答題
已知兩點,直線AM、BM相交于點M,且這兩條直線的斜率之積為
.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標為1,直線PE、PF與圓(
)相切于點E、F,又PE、PF與曲線C的另一交點分別為Q、R.
求△OQR的面積的最大值(其中點O為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知的兩頂點坐標
,
,圓
是
的內切圓,在邊
,
,
上的切點分別為
,
(從圓外一點到圓的兩條切線段長相等),動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)設直線與曲線
的另一交點為
,當點
在以線段
為直徑的圓上時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
定義:對于兩個雙曲線,
,若
的實軸是
的虛軸,
的虛軸是
的實軸,則稱
,
為共軛雙曲線.現給出雙曲線
和雙曲線
,其離心率分別為
.
(1)寫出的漸近線方程(不用證明);
(2)試判斷雙曲線和雙曲線
是否為共軛雙曲線?請加以證明.
(3)求值:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點的雙曲線的弦所在的直線方程;
(2)過點(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點,且Q1,Q2兩點的中點為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中,點A、B的坐標分別為
,點C在x軸上方。
(1)若點C坐標為,求以A、B為焦點且經過點C的橢圓的方程;
(2)過點P(m,0)作傾角為的直線
交(1)中曲線于M、N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數m的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的左、右焦點和短軸的兩個端點構成邊長為2的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線
與橢圓
相交于
,
兩點.點
,記直線
的斜率分別為
,當
最大時,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com