【題目】已知△ABC的三個內角A,B,C的對應邊分別為a,b,c,且 .則使得sin2B+sin2C=msinBsinC成立的實數m的取值范圍是 .
【答案】[2,4]
【解析】解:由三角形的面積公式可得S△ABC= bcsinA=
a2 , 即a2=2
bcsinA 由余弦定理可得a2=b2+c2﹣2bccosA,
∴2 bcsinA=b2+c2﹣2bccosA,
∴b2+c2=2bc( sinA+cosA)=4bcsin(A+
)
∵sin2B+sin2C=msinBsinC,
由正弦定理可得b2+c2=mbc,
∴4bcsin(A+ )=mbc,
∴m=4sin(A+ ),
∵0<A<π,
∴ <A+
<
∴﹣ <sin(A+
)≤1
∴﹣2<m≤4,
∵b2+c2≥2bc,當且僅當b=c時取等號,
∴mbc≥2bc,
∴m≥2,
綜上所述m的取值范圍為[2,4],
所以答案是:[2,4]
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|. (Ⅰ)若不等式f(x)≤2的解集為[0,4],求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A、B、C的對邊分別為a、b、c,且2asinB= b.
(1)求角A的大;
(2)若0<A< ,a=6,且△ABC的面積S=
,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x3﹣
x2+logax,(a>0且a≠1)為定義域上的增函數,f'(x)是函數f(x)的導數,且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)設函數 ,且g(x1)+g(x2)=0,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣1|+|ax﹣5|(0<a<5).
(1)當a=1時,求不等式f(x)≥9的解集;
(2)如果函數y=f(x)的最小值為4,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】先將函數y=2sinx的圖象縱坐標不變,橫坐標壓縮為原來一半,再將得到的圖象向左平移 個單位,則所得圖象的對稱軸可以為( )
A.x=﹣
B.x=
C.x=﹣
D.x=
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com