【題目】已知函數f(x)=﹣3x2+a(6﹣a)x+c.
(1)當c=19時,解關于a的不等式f(1)>0;
(2)若關于x的不等式f(x)>0的解集是(﹣1,3),求實數a,c的值.
【答案】
(1)解:c=19時,f(1)=﹣3+6a﹣a2+19=﹣a2+6a+16>0,
化為a2﹣6a﹣16<0,解得﹣2<a<8.
∴不等式的解集為(﹣2,8)
(2)解:由已知有﹣1,3是關于x的方程3x2﹣a(6﹣a)x﹣c=0的兩個根,
則 ,
解得
【解析】(1)c=19時,f(1)=﹣3+6a﹣a2+19=﹣a2+6a+16>0,化為a2﹣6a﹣16<0,解得即可;(2)利用一元二次不等式的解集與相應的一元二次方程的實數根的關系即可得出.
【考點精析】解答此題的關鍵在于理解二次函數的性質的相關知識,掌握當時,拋物線開口向上,函數在
上遞減,在
上遞增;當
時,拋物線開口向下,函數在
上遞增,在
上遞減,以及對解一元二次不等式的理解,了解求一元二次不等式
解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規律:當二次項系數為正時,小于取中間,大于取兩邊.
科目:高中數學 來源: 題型:
【題目】某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元,根據市場調查,銷售商一次訂購量不會超過500件.
(1)設一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數P=f(x)的表達式;
(2)當銷售商一次訂購多少件服裝時,該服裝廠獲得的利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是橢圓
的左、右頂點,
為左焦點,點
是橢圓上異于
的任意一點,直線
與過點
且垂直于
軸的直線
交于點
,直線
于點
.
(1)求證:直線與直線
的斜率之積為定值;
(2)若直線過焦點
,
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某消費品專賣店的經營資料顯示如下:
①這種消費品的進價為每件14元;
②該店月銷售量Q(百件)與銷售價格P(元)滿足的函數關系式為Q= ,點(14,22),(20,10),(26,1)在函數的圖象上;
③每月需各種開支4400元.
(1)求月銷量Q(百件)與銷售價格P(元)的函數關系;
(2)當商品的價格為每件多少元時,月利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的奇函數f(x),當x>0時,f(x)=﹣x2+2x
(1)求函數f(x)在R上的解析式;
(2)若函數f(x)在區間[﹣1,a﹣2]上單調遞增,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓:
的離心率為
,過右焦點
垂直于
軸的直線與橢圓交于
,
兩點且
,又過左焦點
任作直線
交橢圓于點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓上兩點
,
關于直線
對稱,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com