【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),以原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程是
(Ⅰ)求直線的普通方程與曲線
的直角坐標方程;
(Ⅱ)設直線與曲線
相交于
兩點,當
時,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知拋物線:
上任意一點到其焦點的距離的最小值為1.
,
為拋物線上的兩動點(
、
不重合且均異于原點),
為坐標原點,直線
、
的傾斜角分別為
,
.
(1)求拋物線方程;
(2)若,求證直線
過定點;
(3)若(
為定值),探求直線
是否過定點,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),以原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程是
(Ⅰ)求直線的普通方程與曲線
的直角坐標方程;
(Ⅱ)設直線與曲線
相交于
兩點,當
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面內一動點(
)到點
的距離與點
到
軸的距離的差等于1,
(1)求動點的軌跡
的方程;
(2)過點的直線
與軌跡
相交于不同于坐標原點
的兩點
,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,且橢圓C上恰有三點在集合
中.
(1)求橢圓C的方程;
(2)若點O為坐標原點,直線AB與橢圓交于A、B兩點,且滿足,試探究:點O到直線AB的距離是否為定值.如果是,請求出定值:如果不是,請明說理由.
(3)在(2)的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率
,左頂點為
.過點
作直線
交橢圓
于另一點
,交
軸于點
,點
為坐標原點.
(1)求橢圓的方程:
(2)已知為
的中點,是否存在定點
,對任意的直線
,
恒成立?若存在,求出點
的坐標;若不存在說明理由;
(3)過點作直線
的平行線與橢圓
相交,
為其中一個交點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某校今年高三畢業班報考飛行員學生的體重情況,將所得的數據整理后,畫出了如圖所示的頻率分布直方圖.已知圖中從左到右的前三組的頻率之比為1:2:3,其中體重在的有5人.
(1)求該校報考飛行員的總人數;
(2)從該校報考飛行員的體重在學生中任選3人,設
表示體重超過70
的學生人數,求
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com