【題目】某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,
年家庭總收入的各種用途占比統計如圖中的條形圖,已知
年的就醫費用比
年的就醫費用增加了
元,則該人
年的儲畜費用為( )
A.元B.
元C.
元D.
元
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,則下列結論正確的是( )
A. S2 016=-2 016,a2 013>a4
B. S2 016=2 016,a2 013>a4
C. S2 016=-2 016,a2 013<a4
D. S2 016=2 016,a2 013<a4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電影《厲害了,我的國》于2018年3月正式登陸全國院線,網友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”《厲害了,我的國》正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國》,并把標識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進行猜測:
甲說:第1個盒子里放的是,第3個盒子里放的是
乙說:第2個盒子里放的是,第3個盒子里放的是
丙說:第4個盒子里放的是,第2個盒子里放的是
丁說:第4個盒子里放的是,第3個盒子里放的是
小明說:“四位朋友你們都只說對了一半”
可以預測,第4個盒子里放的電影票為_________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有甲、乙兩套設備生產同一種產品,為了檢測兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內,則為合格品,否則為不合格品.現統計得到相關統計情況如下:
甲套設備的樣本的頻率分布直方圖
乙套設備的樣本的頻數分布表
質量指標值 | ||||||
頻數 | 1 | 6 | 19 | 18 | 5 | 1 |
(1)根據上述所得統計數據,計算產品合格率,并對兩套設備的優劣進行比較;
(2)填寫下面列聯表,并根據列聯表判斷是否有95%的把握認為該企業生產的這種產品的質量指標值與甲、乙兩套設備的選擇有關.
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數,a∈R).在以坐標原點為極點,x軸的非負半軸為極軸的極坐標系中,曲線C的極坐標方程為
.
(1)若點A(0,4)在直線l上,求直線l的極坐標方程;
(2)已知a>0,若點P在直線l上,點Q在曲線C上,若|PQ|最小值為,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】改革開放以來,中國快遞行業持續快速發展,快遞業務量從上世紀年代的
萬件提升到2018年的
億件,快遞行業的發展也給我們的生活帶來了很大便利.已知某市某快遞點的收費標準為:首重(重量小于等于
)收費
元,續重
元
(不足
按
算). (如:一個包裹重量為
則需支付首付
元,續重
元,一共
元快遞費用)
(1)若你有三件禮物重量分別為
,要將三個禮物分成兩個包裹寄出(如:
合為一個包裹,
一個包裹),那么如何分配禮物,使得你花費的快遞費最少?
(2)對該快遞點近天的每日攬包裹數(單位:件)進行統計,得到的日攬包裹數分別為
件,
件,
件,
件,
件,那么從這
天中隨機抽出
天,求這
天的日攬包裹數均超過
件的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】改革開放以來,中國快遞行業持續快速發展,快遞業務量從上世紀年代的
萬件提升到2018年的
億件,快遞行業的發展也給我們的生活帶來了很大便利.已知某市某快遞點的收費標準為:首重(重量小于等于
)收費
元,續重
元
(不足
按
算). (如:一個包裹重量為
則需支付首付
元,續重
元,一共
元快遞費用)
(1)若你有三件禮物重量分別為
,要將三個禮物分成兩個包裹寄出(如:
合為一個包裹,
一個包裹),那么如何分配禮物,使得你花費的快遞費最少?
(2)為了解該快遞點2019年的攬件情況,在2019年內隨機抽查了天的日攬收包裹數(單位:件),得到如下表格:
包裹數(單位:件) | ||||
天數(天) |
現用這天的日攬收包裹數估計該快遞點2019年的日攬收包裏數.若從2019年任取
天,記這
天中日攬收包裹數超過
件的天數為隨機變量
求
的分布列和期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,曲線
的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,直線
的方程為
.
(1)求曲線的極坐標方程;
(2)射線與曲線
、直線
分別交于
、
兩點(
異于極點
),求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)若射線的極坐標方程為
(
).設
與
相交于點
,
與
相交于點
,求
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com