【題目】已知為平面上一點,
為直線
:
上任意一點,過點
作直線
的垂線
,設線段
的中垂線與直線
交于點
,記點
的軌跡為
.
(1)求軌跡的方程;
(2)過點作互相垂直的直線
與
,其中直線
與軌跡
交于點
、
,直線
與軌跡
交于點
、
,設點
,
分別是
和
的中點,求
的面積的最小值.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是菱形,PC⊥BC,點E是PC的中點,且平面PBC⊥平面ABCD.求證:
(1)求證:PA∥平面BDE;
(2)求證:平面PAC⊥平面BDE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某外賣平臺為提高外賣配送效率,針對外賣配送業務提出了兩種新的配送方案,為比較兩種配送方案的效率,共選取50名外賣騎手,并將他們隨機分成兩組,每組25人,第一組騎手用甲配送方案,第二組騎手用乙配送方案.根據騎手在相同時間內完成配送訂單的數量(單位:單)繪制了如下莖葉圖:
(1)根據莖葉圖,求各組內25位騎手完成訂單數的中位數,已知用甲配送方案的25位騎手完成訂單數的平均數為52,結合中位數與平均數判斷哪種配送方案的效率更高,并說明理由;
(2)設所有50名騎手在相同時間內完成訂單數的平均數,將完成訂單數超過
記為“優秀”,不超過
記為“一般”,然后將騎手的對應人數填入下面列聯表;
優秀 | 一般 | |
甲配送方案 | ||
乙配送方案 |
(3)根據(2)中的列聯表,判斷能否有的把握認為兩種配送方案的效率有差異.
附:,其中
.
0.05 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區城鄉居民儲蓄存款年底余額(單位:億元)如圖所示,下列判斷一定不正確的是( )
A.城鄉居民儲蓄存款年底余額逐年增長
B.農村居民的存款年底余額所占比重逐年上升
C.到2019年農村居民存款年底總余額已超過了城鎮居民存款年底總余額
D.城鎮居民存款年底余額所占的比重逐年下降
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國慶70周年閱兵式上的女兵們是一道靚麗的風景線,每一名女兵都是經過層層篩選才最終入選受閱方隊,篩選標準非常嚴格,例如要求女兵身高(單位:cm)在區間內.現從全體受閱女兵中隨機抽取200人,對她們的身高進行統計,將所得數據分為
,
,
,
,
五組,得到如圖所示的頻率分布直方圖,其中第三組的頻數為75,最后三組的頻率之和為0.7.
(1)請根據頻率分布直方圖估計樣本的平均數和方差
(同一組中的數據用該組區間的中點值代表);
(2)根據樣本數據,可認為受閱女兵的身高X(cm)近似服從正態分布,其中
近似為樣本平均數
,
近似為樣本方差
.
(i)求;
(ii)若從全體受閱女兵中隨機抽取10人,求這10人中至少有1人的身高在174.28cm以上的概率.
參考數據:若,則
,
,
,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過
的直線與拋物線
相交于
兩點.
(1)若點是點
關于坐標原點
的對稱點,求
面積的最小值;
(2)是否存在垂直于軸的直線
,使得
被以
為直徑的圓截得的弦長恒為定值?若存在,求出
的方程和定值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】紅鈴蟲(Pectinophora gossypiella)是棉花的主要害蟲之一,其產卵數與溫度有關.現收集到一只紅鈴蟲的產卵數y(個)和溫度x(℃)的8組觀測數據,制成圖1所示的散點圖.現用兩種模型①,②
分別進行擬合,由此得到相應的回歸方程并進行殘差分析,進一步得到圖2所示的殘差圖.
根據收集到的數據,計算得到如下值:
25 | 2.89 | 646 | 168 | 422688 | 48.48 | 70308 |
表中;
;
;
;
(1)根據殘差圖,比較模型①、②的擬合效果,應選擇哪個模型?并說明理由;
(2)根據(1)中所選擇的模型,求出y關于x的回歸方程(系數精確到0.01),并求溫度為34℃時,產卵數y的預報值.
(參考數據:,
,
,
)
附:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查某社區居民每天參加健身的時間,某機構在該社區隨機采訪男性、女性各50名,其中每人每天的健身時間不少于1小時稱為“健身族”,否則稱其為"非健身族”,調查結果如下:
健身族 | 非健身族 | 合計 | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合計 | 70 | 30 | 100 |
(1)若居民每人每天的平均健身時間不低于70分鐘,則稱該社區為“健身社區”. 已知被隨機采訪的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分時間分別是1.2小時,0.8小時,1.5小時,0.7小時,試估計該社區可否稱為“健身社區”?
(2)根據以上數據,能否在犯錯誤的概率不超過5%的情況下認為“健身族”與“性別”有關?
參考公式: ,其中
.
參考數據:
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com