精英家教網 > 高中數學 > 題目詳情

【題目】已知雙曲線的右頂點為, 為圓心的圓與雙曲線的某一條漸近線交于兩點.若,且(其中為原點),則雙曲線的離心率為( )

A. B. C. D.

【答案】C

【解析】

設雙曲線的一條漸近線方程為x,Aa,0),Pm,),(m>0),由向量共線的坐標表示,可得Q的坐標,求得弦長|PQ|,運用中點坐標公式,可得PQ的中點坐標,由兩直線垂直的條件:斜率之積為﹣1,可得m,r,運用圓的弦長公式計算即可得到a,b的關系,再由離心率公式計算即可得到所求值.

解:設雙曲線的一條漸近線方程

yx,Aa,0),

Pm),(m>0),

3,可得Q(3m),

圓的半徑為r=|PQ|2m,

PQ的中點為H(2m),

AHPQ,可得

解得m,r

A到漸近線的距離為d,

|PQ|=2r,

即為dr,即有

可得,

e

另解:可得△PAQ為等邊三角形,

OPx,可得=3x,PQ=2x,

MPQ的中點,可得PMx,AMx,

tan∠MOA,

e

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】解下列不等式.

1)若方程有兩個實根,求不等式的解集;

2;

3.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,,,分別為線段上的點,且.

(1)證明:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,五面體ABCC1B1中,AB14.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角ABCC1為直二面角.

1DAC上運動,當D在何處時,有AB1//平面BDC1,并且說明理由;

2)當AB1//平面BDC1時,求二面角CBC1D余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】表示自然數n的所有因數中最大的那個奇數,例如:9的因數有1,3,9,,10的因數有1,2,5,10,,那么______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系已知曲線的極坐標方程為,直線的參數方程為為參數),點的極坐標為設直線與曲線相交于兩點

1寫出曲線的直角坐標方程和直線的普通方程;

2的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在底面是菱形的四棱錐中,,點EPD上,且

1)證明:平面ABCD;

2)求二面角的大小;

3)棱PC上是否存在一點F,使平面AEC?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,兩焦點與短軸的一個端點的連線構成的三角形面積為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設與圓O相切的直線l交橢圓CA,B兩點(O為坐標原點),求△AOB面積的最大值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中,角所對的邊分別是的面積為,且,.

(1)求的值;

(2)若,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视