【題目】已知中,角
所對的邊分別是
,
的面積為
,且
,
.
(1)求的值;
(2)若,求
的值.
【答案】(1)(2)
【解析】
(1)由已知利用三角形面積公式可得tanA=2,利用同角三角函數基本關系式可求sinA,cosA,由三角形內角和定理,兩角和的余弦函數公式可求cosB的值.
(2)利用同角三角函數基本關系式可求sinB,利用正弦定理可得b的值,即可得S的值.
(1)∵SbcsinA=bccosA,
∴sinA=2cosA,可得:tanA=2,
∵△ABC中,A為銳角,
又∵sin2A+cos2A=1,
∴可得:sinA,cosA
,
又∵C,
∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC,
(2)在△ABC中,sinB,
由正弦定理,可得:b3,
∴S=bccosA=3.
科目:高中數學 來源: 題型:
【題目】某消費者協會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務活動,著力提升消費者維權意識.組織方從參加活動的1000名群眾中隨機抽取n名群眾,按他們的年齡分組:第1組,第2組
,第3組
,第4組
,第5組
,其中第1組
有6人,得到的頻率分布直方圖如圖所示.
(1)求m,n的值,并估計抽取的n名群眾中年齡在的人數;
(2)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取3名群眾組成維權志愿者服務隊,求至少有兩名女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年2月22日上午,山東省省委、省政府在濟南召開山東省全面展開新舊動能轉換重大工程動員大會,會議動員各方力量,迅速全面展開新舊動能轉換重大工程.某企業響應號召,對現有設備進行改造,為了分析設備改造前后的效果,現從設備改造前后生產的大量產品中各抽取了200件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖3是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數分布表.
表1:設備改造后樣本的頻數分布表
(1)完成下面的列聯表,并判斷是否有99%的把握認為該企業生產的這種產品的質量指標值與設備改造有關;
(2)根據圖3和表1提供的數據,試從產品合格率的角度對改造前后設備的優劣進行比較;
(3)企業將不合格品全部銷毀后,根據客戶需求對合格品進行等級細分,質量指標值落在內的定為一等品,每件售價240元;質量指標值落在
或
內的定為二等品,每件售價180元;其它的合格品定為三等品,每件售價120元.根據表1的數據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.現有一名顧客隨機購買兩件產品,設其支付的費用為
(單位:元),求
的分布列和數學期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程為
(
為參數),若以直角坐標系中的原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
(
為實數.)
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)若曲線與曲線
有公共點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】①回歸分析中,相關指數的值越大,說明殘差平方和越大;
②對于相關系數,
越接近1,相關程度越大,
越接近0,相關程度越小;
③有一組樣本數據得到的回歸直線方程為
,那么直線
必經過點
;
④是用來判斷兩個分類變量是否有關系的隨機變量,只對于兩個分類變量適合;
以上幾種說法正確的序號是__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com