如圖所示,離心率為的橢圓
上的點到其左焦點的距離的最大值為3,過橢圓
內一點
的兩條直線分別與橢圓交于點
、
和
、
,且滿足
,其中
為常數,過點
作
的平行線交橢圓于
、
兩點.
(1)求橢圓的方程;
(2)若點,求直線
的方程,并證明點
平分線段
.
(1);(2)詳見解析.
解析試題分析:(1)由題得,
,聯立
解這個方程組即得.(2)首先求出直線MN的方程.由于MN過點P(1,1),故只要求出MN的斜率即可.又由于MN平行AB,故先求出直線AB的斜率.設
,則
.由
可得點C的坐標,由
可得點D的坐標,將A、B、C、D的坐標代入橢圓方程得四個等式,利用這四個等式可整體求出
,然后求出直線MN的方程,與橢圓方程聯立可求得MN的中點坐標即為點P的坐標,從而問題得證 .
(1)由題得,
,聯立
解得
,
,
,
∴橢圓方程為 4分
(2)方法一:設,由
可得
.
∵點在橢圓上,故
整理得: 6分
又點在橢圓上可知
,
故有 ①
由,同理可得:
②
②-①得:,即
9分
又∥
,故
∴直線的方程為:
,即
.
由可得:
∴是
的中點,即點
平分線段
12分
(2)方法二:∵,
,∴
,即
在梯形中,設
中點為
,
中點為
,
過作
的平行線交
于點
∵與
面積相等,∴
∴,
,
三點共線 6分
設,
∴,
,
兩式相減得 ,
科目:高中數學 來源: 題型:解答題
設分別是橢圓
的 左,右焦點。
(1)若P是該橢圓上一個動點,求的 最大值和最小值。
(2)設過定點M(0,2)的 直線l與橢圓交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l斜率k的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xoy中,已知橢圓C1:的左焦點為F1(-1,0),且點P(0,1)在C1上。
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:相切,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓的離心率為
,
軸被曲線
截得的線段長等于
的長半軸長。
(1)求,
的方程;
(2)設與
軸的交點為M,過坐標原點O的直線
與
相交于點A,B,直線MA,MB分別與
相交與D,E.
①證明:;
②記△MAB,△MDE的面積分別是.問:是否存在直線
,使得
=
?請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在坐標原點,對稱軸為坐標軸,焦點在
軸上,有一個頂點為
,
.
(1)求橢圓的方程;
(2)過點作直線
與橢圓
交于
兩點,線段
的中點為
,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)設,過點
作直線
(不與
軸重合)交橢圓于
、
兩點,連結
、
分別交直線
于
、
兩點,試探究直線
、
的斜率之積是否為定值,若為定值,請求出;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:,點A、B在拋物線C上.
(1)若直線AB過點M(2p,0),且=4p,求過A,B,O(O為坐標原點)三點的圓的方程;
(2)設直線OA、OB的傾斜角分別為,且
,問直線AB是否會過某一定點?若是,求出這一定點的坐標,若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com