【題目】已知橢圓的離心率為
,以橢圓E的長軸和短軸為對角線的四邊形的面積為
.
(1)求橢圓E的方程;
(2)若直線與橢圓E相交于A,B兩點,設P為橢圓E上一動點,且滿足
(O為坐標原點).當
時,求
的最小值.
科目:高中數學 來源: 題型:
【題目】為支援武漢的防疫,某醫院職工踴躍報名,其中報名的醫生18人,護士12人,醫技6人,根據需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統抽樣和分層抽樣,均不用剔除人員.當抽取n+1人時,若采用系統抽樣,則需剔除1個報名人員,則抽取的救援人員為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
為常數.
(Ⅰ)若的圖像在
處的切線經過點(3,4),求
的值;
(Ⅱ)若,求證:
;
(Ⅲ)當函數存在三個不同的零點時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的直角坐標方程;
(2)已知點,直線
與曲線
交于
兩點,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市交管部門為了宣傳新交規舉辦交通知識問答活動,隨機對該市15~65歲的人群抽樣,回答問題統計結果如圖表所示.
組別 | 分組 | 回答正確的人數 | 回答正確的人數占本組的概率 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | 0.9 | |
第3組 | [35,45) | 27 | |
第4組 | [45,55) | 0.36 | |
第5組 | [55,65) | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機抽取2人頒發幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國在2018年社保又出新的好消息,之前流動就業人員跨地區就業后,社保轉移接續的手續往往比較繁瑣,費時費力.社保改革后將簡化手續,深得流動就業人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續所需時間(天)與人數的頻數分布表:
時間 | ||||||
人數 | 15 | 60 | 90 | 75 | 45 | 15 |
(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續所需時間與是否流動人員的列聯表,并判斷是否有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.
列聯表如下
流動人員 | 非流動人員 | 總計 | |
辦理社保手續所需 時間不超過4天 | |||
辦理社保手續所需 時間超過4天 | 60 | ||
總計 | 210 | 90 | 300 |
(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為
的人數為
,求出
分布列及期望值.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓錐(其中
為頂點,
為底面圓心)的側面積與底面積的比是
,則圓錐
與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com