【題目】為支援武漢的防疫,某醫院職工踴躍報名,其中報名的醫生18人,護士12人,醫技6人,根據需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統抽樣和分層抽樣,均不用剔除人員.當抽取n+1人時,若采用系統抽樣,則需剔除1個報名人員,則抽取的救援人員為________.
科目:高中數學 來源: 題型:
【題目】中國古代中的“禮、樂、射、御、書、數”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數”,數學.某校國學社團開展“六藝”課程講座活動,每藝安排一節,連排六節,一天課程講座排課有如下要求:“數”必須排在前三節,且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )
A. 種 B.
種 C.
種 D.
種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點.
(I)證明:AE⊥PD;
(II)設AB=PA=2,
①求異面直線PB與AD所成角的正弦值;
②求二面角E-AF-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-5:不等式選講
已知f(x)=|x+a|(a∈R).
(1)若f(x)≥|2x﹣1|的解集為[0,2],求a的值;
(2)若對任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某餐廳通過查閱了最近5次食品交易會參會人數 (萬人)與餐廳所用原材料數量
(袋),得到如下統計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數 | 13 | 9 | 8 | 10 | 12 |
原材料 | 32 | 23 | 18 | 24 | 28 |
(1)根據所給5組數據,求出關于
的線性回歸方程
.
(2)已知購買原材料的費用 (元)與數量
(袋)的關系為
,
投入使用的每袋原材料相應的銷售收入為700元,多余的原材料只能無償返還,據悉本次交易大會大約有15萬人參加,根據(1)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入
原材料費用).
參考公式: ,
.
參考數據: ,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓E的長軸和短軸為對角線的四邊形的面積為
.
(1)求橢圓E的方程;
(2)若直線與橢圓E相交于A,B兩點,設P為橢圓E上一動點,且滿足
(O為坐標原點).當
時,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com