【題目】已知函數.
(Ⅰ) 當時,求函數
的單調區間;
(Ⅱ)求函數在區間
上的最大值.
【答案】(Ⅰ)的單調遞增區間為
,單調遞減區間為
.(Ⅱ) 見解析
【解析】
(Ⅰ)當時,求得函數的導數
,利用導函數取值的正負,即可得出函數的單調性;
(Ⅱ)由 (Ⅰ)知,分類討論得到函數在區間
上的單調性,即可求解函數的最大值,得到答案。
(Ⅰ)由題意,當時,函數
,
則,
令,即
,即
,解得
或
,
所以函數在
,
上單調遞增,
令,即
,即
,解得
,
所以函數在
上單調遞減。
即函數 的單調遞增區間為
,
的單調遞減區間為
.
(Ⅱ) 由函數,則
,
令,即
,即
,解得
或
,
(1)當,即
時,此時當
時,
,所以
在
上單調遞減,所以最大值為
;
(2)當,即
時,
①當時,即
時,此時當
時,
,所以
在
上單調遞減,所以最大值為
;
②當時,即
時,此時當
時,
,所以
在
上單調遞增,當
時,
,所以
在
上單調遞減,所以最大值為
;
③當時,即
時,此時當
時,
,所以
在
上單調遞增,所以最大值為
;
(3)當時,函數
在區間
上單調遞減,最大值為
,
綜上所述,可得:
當時,
;
當時,
;
當時,
.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的一個焦點為
,點
在橢圓
上.
(Ⅰ)求橢圓的方程與離心率;
(Ⅱ)設橢圓上不與
點重合的兩點
,
關于原點
對稱,直線
,
分別交
軸于
,
兩點.求證:以
為直徑的圓被
軸截得的弦長是定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐的底面
為直角梯形,
,
,
,
為正三角形.
(1)點為棱
上一點,若
平面
,
,求實數
的值;
(2)求點B到平面SAD的距離.
【答案】(1);(2)
【解析】試題分析:(1)由平面
,可證
,進而證得四邊形
為平行四邊形,根據
,可得
;
(2)利用等體積法可求點
到平面
的距離.
試題解析:((1)因為平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因為,所以四邊形BCDM為平行四邊形,又
,所以M為AB的中點.
因為,
.
(2)因為
,
,
所以平面
,
又因為平面
,
所以平面平面
,
平面平面
,
在平面內過點
作
直線
于點
,則
平面
,
在和
中,
因為,所以
,
又由題知,
所以,
由已知求得,所以
,
連接BD,則,
又求得的面積為
,
所以由點B 到平面
的距離為
.
【題型】解答題
【結束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數
的函數關系式;
(2)根據該公司所有派送員100天的派送記錄,發現派送員的日平均派送單數滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在
時,日平均派送量為
單.
若將頻率視為概率,回答下列問題:
①根據以上數據,設每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪
的分布列,數學期望及方差;
②結合①中的數據,根據統計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數據: ,
,
,
,
,
,
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,離心率
,點
在橢圓上.
(1)求橢圓C的標準方程;
(2)設點P是橢圓C上一點,左頂點為A,上頂點為B,直線PA與y軸交于點M,直線PB與x軸交于點N,求證: 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學導師計劃從自己所培養的研究生甲、乙兩人中選一人,參加雄安新區某部門組織的計算機技能大賽,兩人以往5次的比賽成績統計如下:(滿分100分,單位:分).
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績 | 87 | 87 | 84 | 100 | 92 |
乙的成績 | 100 | 80 | 85 | 95 | 90 |
(1)試比較甲、乙二人誰的成績更穩定;
(2)在一次考試中若兩人成績之差的絕對值不大于2,則稱兩人“實力相當”.若從上述5次成績中任意抽取2次,求恰有一次兩人“實力相當”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌服裝店五一進行促銷活動,店老板為了擴大品牌的知名度同時增強活動的趣味性,約定打折辦法如下:有兩個不透明袋子,一個袋中放著編號為1,2,3的三個小球,另一個袋中放著編號為4,5的兩個小球(小球除編號外其它都相同),顧客需從兩個袋中各抽一個小球,兩球的編號之和即為該顧客買衣服所打的折數(如,一位顧客抽得的兩個小球的編號分別為2,5,則該顧客所習的買衣服打7折).要求每位顧客先確定購買衣服后再取球確定打折數.已知三位顧客各買了一件衣服.
(1)求三位顧客中恰有兩位顧客的衣服均打6折的概率;
(2)兩位顧客都選了定價為2000元的一件衣服,設
為打折后兩位顧客的消費總額,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的離心率為
,且過點
.
(1)求橢圓的方程;
(2)設為橢圓
上任一點,
為其右焦點,
是橢圓的左、右頂點,點
滿足
.
①證明: 為定值;
②設是直線
上的任一點,直線
分別另交橢圓
于
兩點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】—般地,若函數的定義域為
,值域為
,則稱
為
的“
倍跟隨區間”;特別地,若函數
的定義域為
,值域也為
,則稱
為
的“跟隨區間”.下列結論正確的是( )
A.若為
的跟隨區間,則
B.函數不存在跟隨區間
C.若函數存在跟隨區間,則
D.二次函數存在“3倍跟隨區間”
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com