【題目】在平面直角坐標系xOy中,A(﹣2,0),B(2,0),P為不在x軸上的動點,直線PA,PB的斜率滿足kPAkPB.
(1)求動點P的軌跡Γ的方程;
(2)若M,N是軌跡Γ上兩點,kMN=1,求△OMN面積的最大值.
【答案】(1)(y≠0);(2)
【解析】
(1)設P(x,y)為軌跡Γ上任意一點,根據kPAkPB,得到
,化簡即得解;
(2)設MN:y=x+b,聯立得到韋達定理,利用弦長公式表示弦長|MN|,O到直線MN的距離,繼而表示△OMN的面積,利用導數研究單調性,求最值即可.
(1)設P(x,y)為軌跡Γ上任意一點,則根據kPAkPB.
即,
整理得動點P的軌跡Γ的方程為:(y≠0);
(2)設MN:y=x+b,聯立,
整理得5x2+8bx+4b2﹣4=0,
△=5﹣b2>0,
設M(x1,y1),N(x2,y2),
則x1+x2b,x1x2
(b2﹣1),
|MN||x1﹣x2|
,
O到直線MN的距離d,
所以△OMN面積S,
設f(b)=5b2﹣b4,
則f′(b)=10b﹣4b3=0,
解得b=0或b=±,
又因為5﹣b2>0,
故b=0或b=±
且S(0)=0,S(±)
,
故△OMN的面積S最大值為.
科目:高中數學 來源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=
,O是AC的中點,E是BD的中點.
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4cos ωx·sin+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.
(1)求a和ω的值;
(2)求函數f(x)在[0,π]上的單調遞減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經過地鐵站的數量實施分段優惠政策,不超過站的地鐵票價如下表:
乘坐站數 | |||
票價(元) |
現有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過
站的概率分別為
,
;甲、乙乘坐超過
站的概率分別為
,
.
(1)求甲、乙兩人付費相同的概率;
(2)設甲、乙兩人所付費用之和為隨機變量,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,命題p:“x∈[1,2],x2﹣a≥0”,命題q:“x∈R,x2+2ax+2﹣a=0”.
(1)若命題p為真命題,求實數a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+ax2+bx(e為自然對數的底,a,b為常數),曲線y=f(x)在x=0處的切線經過點A(﹣1,﹣1)
(1)求實數b的值;
(2)是否存在實數a,使得曲線y=f(x)所有切線的斜率都不小于2?若存在,求實數a的取值集合,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市統計局就某地居民的月收入調查了10000人,并根據所得數據畫出樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在).
(1)求居民收入在的頻率;
(2)根據頻率分布直方圖算出樣本數據的中位數;
(3)為了分析居民的收入與年齡、職業等方面的關系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在的這段應抽取多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】改革開放40年來,體育產業蓬勃發展反映了“健康中國”理念的普及.下圖是我國2006年至2016年體育產業年增加值及年增速圖.其中條形圖表示體育產業年增加值(單位:億元),折線圖為體育產業年增長率(%).
(Ⅰ)從2007年至2016年這十年中隨機選出一年,求該年體育產業年增加值比前一年多億元以上的概率;
(Ⅱ)從2007年至2011年這五年中隨機選出兩年,求至少有一年體育產業年增長率超過25%的概率;
(Ⅲ)由圖判斷,從哪年開始連續三年的體育產業年增長率方差最大?從哪年開始連續三年的體育產業年增加值方差最大?(結論不要求證明)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com