【題目】已知函數f(x)=ex+ax2+bx(e為自然對數的底,a,b為常數),曲線y=f(x)在x=0處的切線經過點A(﹣1,﹣1)
(1)求實數b的值;
(2)是否存在實數a,使得曲線y=f(x)所有切線的斜率都不小于2?若存在,求實數a的取值集合,若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】為弘揚民族古典文化,市電視臺舉行古詩詞知識競賽,某輪比賽由節目主持人隨機從題庫中抽取題目讓選手搶答,回答正確將給該選手記正10分,否則記負10分.根據以往統計,某參賽選手能答對每一個問題的概率均為;現記“該選手在回答完
個問題后的總得分為
”.
(1)求且
(
)的概率;
(2)記,求
的分布列,并計算數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,A(﹣2,0),B(2,0),P為不在x軸上的動點,直線PA,PB的斜率滿足kPAkPB.
(1)求動點P的軌跡Γ的方程;
(2)若M,N是軌跡Γ上兩點,kMN=1,求△OMN面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,
,
,點
在線段
上,且
.
(Ⅰ)求證:;
(Ⅱ)求二面角的正弦值;
(Ⅲ)在線段上是否存在點
,使得
,若存在,求出線段
的長,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數據中分別隨機抽取100個,并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:
假設甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.
(1)寫出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為
,
,試比較
與
的大;(只需寫出結論)
(2)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于20箱且另一個不高于20箱的概率;
(3)設表示在未來3天內甲種酸奶的日銷售量不高于20箱的天數,以日銷售量落入各組的頻率作為概率,求
的數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com