【題目】已知函數.
(1)求函數f(x)的單調遞增區間;
(2)將函數f(x)的圖象向右平移個單位,再將所得圖象的橫坐標縮短到原來的一半,縱坐標不變,得到新的函數y=g(x),當
時,求g(x)的值域.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+a|+|2x+1|,a∈R.
(1)當a=1時,求不等式f(x)≤1的解集;
(2)設關于x的不等式f(x)≤-2x+1的解集為P,且 P,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】德國數學家科拉茨1937年提出了一個著名的猜想:任給一個正整數n,如果n是偶數,就將它減半(即);如果n是奇數,則將它乘3加1(即3n+1),不斷重復這樣的運算,經過有限步后,一定可以得到1. 對于科拉茨猜想,目前誰也不能證明,也不能否定,現在請你研究:如果對正整數n(首項)按照上述規則施行變換后的第8項為1(注:l可以多次出現),則n的所有不同值的個數為
A. 4 B. 6 C. 8 D. 32
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為普及高中生安全逃生知識與安全防護能力,某學校高一年級舉辦了高中生安全知識與安全逃生能力競賽.該競賽分為預賽和決賽兩個階段,預賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數,滿分為100分)進行統計,制成如下頻率分布表.
分數(分數段) | 頻數(人數) | 頻率 |
[60,70) | 9 | x |
[70,80) | y | 0.38 |
[80,90) | 16 | 0.32 |
[90,100) | z | s |
合計 | p | 1 |
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按規定,預賽成績不低于90分的選手參加決賽,參加決賽的選手按照抽簽方式決定出場順序.已知高一二班有甲、乙兩名同學取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一二班在決賽中進入前三名的人數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“a<﹣2”是“函數f(x)=ax+3在區間[﹣1,2]上存在零點x0”的( )
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既非充分也非必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列判斷錯誤的是
A. 若隨機變量服從正態分布
,則
;
B. 若組數據
的散點都在
上,則相關系數
;
C. 若隨機變量服從二項分布:
, 則
;
D. 是
的充分不必要條件;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,﹣1)是拋物線C:x2=2py(p>0)準線上的一點,點F是拋物線C的焦點,點P在拋物線C上且滿足|PF|=m|PA|,當m取最小值時,點P恰好在以原點為中心,F為焦點的雙曲線上,則此雙曲線的離心率為( )
A.
B.
C. +1
D. +1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學參加了今年重慶市舉辦的數學、物理、化學三門學科競賽的初賽,在成績公布之前,老師估計他能進復賽的概率分別為、
、
,且這名同學各門學科能否進復賽相互獨立.
(1)求這名同學三門學科都能進復賽的概率;
(2)設這名同學能進復賽的學科數為隨機變量X,求X的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com