【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)點P在直線l:2x-4y+3=0上,過點P作圓C的切線,切點記為M,求使|PM|最小的點P的坐標.
【答案】(1) (2+)x-y=0或(2-
)x-y=0或x+y+1=0或x+y-3=0
(2) (-,
)
【解析】(1)將圓C的方程整理,得(x+1)2+(y-2)2=2.
①當切線在兩坐標軸上的截距為零時,設切線方程為y=kx,
則,解得k=2±
,
從而切線方程為y=(2±)x.
②當切線在兩坐標軸上的截距不為零時,設切線方程為x+y-a=0,則,解得a=-1或3,
從而切線方程為x+y+1=0或x+y-3=0.
綜上,切線方程為(2+)x-y=0或(2-
)x-y=0或x+y+1=0或x+y-3=0.
(2)因為圓心C(-1,2)到直線l的距離d=,所以直線l與圓C相離.
當|PM|取最小值時,|CP|取得最小值,此時CP垂直于直線l.
所以直線CP的方程為2x+y=0.
解方程組得點P的坐標為(-
,
).
科目:高中數學 來源: 題型:
【題目】為了了解甲、乙兩名同學的數學學習情況,對他們的次數學測試成績(滿分
分)進行統計,作出如下的莖葉圖,其中
處的數字模糊不清,已知甲同學成績的中位數是
,乙同學成績的平均分是
分.
(1)求和
的值;
(2)現從成績在之間的試卷中隨機抽取兩份進行分析,求恰抽到一份甲同學試卷的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 平行于同一個平面的兩個平面平行
B. 平行于同一直線的兩個平面平行
C. 垂直于同一個平面的兩條直線平行
D. 垂直于同一條直線的兩個平面平行
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為增強市民的節能環保意識,鄭州市面向全市征召義務宣傳志愿者. 從符合條件的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區是: .
(Ⅰ)求圖中的值,并根據頻率分布直方圖估計這500名志愿者中年齡在
歲的人數;
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人. 記這3名志愿者中“年齡低于35歲”的人數為,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種產品,每年需投入固定成本25萬元,此外每生產1件這樣的產品,還需增加投入0.5萬元,經市場調查知這種產品年需求量為500件,產品銷售數量為t件時,銷售所得的收入為萬元.
(1)該公司這種產品的年生產量為x件,生產并銷售這種產品所得到的利潤關于當年產量x的函數為f(x),求f(x);
(2)當該公司的年產量為多少件時,當年所獲得的利潤最大
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在上的函數
對于任意實數
,都有
成立,且
,當
時,
.
(1)判斷的單調性,并加以證明;
(2)試問:當時,
是否有最值?如果有,求出最值;如果沒有,說明理由;
(3)解關于的不等式
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由兩點確定的直線中,斜率不存在的是
A.(4,2)與(-4,1) B.(0,3)與(3,0)
C.(3,-1)與(2, -1) D.(-2,2)與(-2,5)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義在區間
上的奇函數,且
,若
時,有
成立.
(1)證明:函數在區間
上是增函數;
(2)解不等式;
(3)若不等式對
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com