【題目】以直角坐標系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標為(1,-5),點C的極坐標為
,若直線l經過點P,且傾斜角為
,圓C的半徑為4.
(1).求直線l的參數方程及圓C的極坐標方程;
(2).試判斷直線l與圓C有位置關系.
【答案】(1),
;(2)直線
與圓
相離.
【解析】試題分析:本題主要考查直線的參數方程、極坐標方程、點到直線的距離公式、直線與圓的位置關系等基礎知識,意在考查考生的運算求解能力、推理論證能力以及轉化思想的應用.第一問,利用已知條件列出直線的參數方程,利用極坐標與直角坐標的轉化公式,得到點C的直角坐標,從而得到圓C的標準方程,再利用極坐標與直角坐標的轉化公式得到圓C的極坐標方程;第二問,將直線的參數方程先轉化成普通方程,利用點到直線的距離公式求出距離,與半徑比較大小,來判斷直線與圓的位置關系.
試題解析:(1)直線的參數方程
,即
(
為參數)
由題知點的直角坐標為
,圓
半徑為
,
∴圓方程為
將
代入
得圓極坐標方程
5分
(2)由題意得,直線的普通方程為
,
圓心到
的距離為
,
∴直線與圓
相離. 10分
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的首項a1=1,公差d>0,且第2項、第5項、第14項分別是等比數列{bn}的第2項、第3項、第4項.
(1)求數列{an}與{bn}的通項公式;
(2)設數列{cn}對n∈N*均有 =an+1成立,求c1+c2+c3+…+c2016 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接黨的“十九”大的召開,某校組織了“歌頌祖國,緊跟黨走”黨史知識競賽,從參加考試的學生中抽出50名學生,將其成績(滿分100分,成績均為整數)分成六段,
,…,
后繪制頻率分布直方圖(如下圖所示)
(Ⅰ)求頻率分布圖中的值;
(Ⅱ)估計參加考試的學生得分不低于80的概率;
(Ⅲ)從這50名學生中,隨機抽取得分在的學生2人,求此2人得分都在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且2sin Acos C=2sin B-sin C.
(1)求A的大小;
(2)在銳角三角形ABC中, ,求c+b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓短軸端點和兩個焦點的連線構成正方形,且該正方形的內切圓方程為
.
(1)求橢圓的方程;
(2)若拋物線的焦點與橢圓
的一個焦點
重合,直線
與拋物線
交于兩點
,且
,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鋼廠打算租用,
兩種型號的火車車皮運輸900噸鋼材,
,
兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬元/個和2.4萬元/個,鋼廠要求租車皮總數不超過21個,且
型車皮不多于
型車皮7個,分別用
,
表示租用
,
兩種車皮的個數.
(1)用,
列出滿足條件的數學關系式,并畫出相應的平面區域;
(2)分別租用,
兩種車皮的個數是多少時,才能使得租金最少?并求出此最小租金.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程是
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)寫出曲線的直角坐標方程;
(Ⅱ)設點.
分別在
.
上運動,若
的最小值為1,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com