【題目】已知橢圓短軸端點和兩個焦點的連線構成正方形,且該正方形的內切圓方程為
.
(1)求橢圓的方程;
(2)若拋物線的焦點與橢圓
的一個焦點
重合,直線
與拋物線
交于兩點
,且
,求
的面積的最大值.
【答案】(1);(2)
.
【解析】試題分析:(1)先寫出一個短軸端點與一個焦點的直線方程可以是,即
,利用圓心到直線距離等于半徑,列方程求解即可;
(2)拋物線的焦點在
軸的正半軸上,故
,故
,拋物線
的方程為
,由
,可得
,設點
,則
,
代入求出關于
的表達式,利用判別式大于0
的范圍,求值域即可.
試題解析:
(1) 設橢圓的焦距為,則由條件可得
,連接一個短軸端點與一個焦點的直線方程可以是
,即
,由直線與圓相切可得
,故
,則
,故橢圓
的方程為
.
(2) 拋物線的焦點在
軸的正半軸上,故
,故
,拋物線
的方程為
,由
,可得
,由直線
與拋物線
有兩個不同交點可得
在
時恒成立,設點
,則
,則
,又點
到直線
的距離為
,故
的面積為
.令
,則
,令
,可得
或
,故
在
上單調遞增,在
上單調遞減,故
時,
取最大值
,則
的面積取最大值為
.
科目:高中數學 來源: 題型:
【題目】(12分)在數列中,對于任意
,等式
成立,其中常數.
(Ⅰ)求的值;
(Ⅱ)求證:數列為等比數列;
(Ⅲ)如果關于n的不等式的解集為
,求b和c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班同學利用國慶節進行社會實踐,對[25,55]歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統計表和各年齡段人數頻率分布直方圖:
組數 | 分組 | 低碳族的人數 | 占本組的頻率 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | 0.4 | |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55] | 15 | 0.3 |
(1)補全頻率分布直方圖并求 的值;
(2)從年齡段在[40,50)的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領隊,求選取的2名領隊中恰有1人年齡在[40,45)歲的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲,乙兩臺機床同時生產一種零件,其質量按測試指標劃分:指標大于或等于95為正品,小于95為次品,現隨機抽取這兩臺車床生產的零件各100件進行檢測,檢測結果統計如下:
測試指標 | |||||
機床甲 | 8 | 12 | 40 | 32 | 8 |
機床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計甲機床、乙機床生產的零件為正品的概率;
(2)甲機床生產一件零件,若是正品可盈利160元,次品則虧損20元;乙機床生產一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現需生產這種零件2件,以獲得利潤的期望值為決策依據,應該如何安排生產最佳?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在邊長為4的正方形的邊上有一點
沿著折線
由點
(起點)向點
(終點)運動。設點
運動的路程為
,
的面積為
,且
與
之間的函數關系式用如圖所示的程序框圖給出.
(1)寫出框圖中①、②、③處應填充的式子;
(2)若輸出的面積值為6,則路程
的值為多少?并指出此時點
在正方形的什么位置上?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}的各項均為正數,且2a1+3a2=1,a32=9a2a6 ,
(1)求數列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an , 求數列{ }的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.
(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電子原件生產廠生產的10件產品中,有8件一級品,2件二級品,一級品和二級品在外觀上沒有區別.從這10件產品中任意抽檢2件,計算:
(1)2件都是一級品的概率;
(2)至少有一件二級品的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com