【題目】甲,乙兩臺機床同時生產一種零件,其質量按測試指標劃分:指標大于或等于95為正品,小于95為次品,現隨機抽取這兩臺車床生產的零件各100件進行檢測,檢測結果統計如下:
測試指標 | |||||
機床甲 | 8 | 12 | 40 | 32 | 8 |
機床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計甲機床、乙機床生產的零件為正品的概率;
(2)甲機床生產一件零件,若是正品可盈利160元,次品則虧損20元;乙機床生產一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現需生產這種零件2件,以獲得利潤的期望值為決策依據,應該如何安排生產最佳?
【答案】(1)甲、乙兩機床為正品的概率分別為;(2)安排乙機床生產最佳.
【解析】試題分析:(1)由古典概型概率公式可估計甲、乙兩機床為正品的概率分別為;(2)隨機變量
為320元、140元、-40元;
為400元、160元、-80元;
為360元、180元、120元、-60元,分別求出各隨機變量發生的概率,再根據期望公式分別求期望值,比較大小即可;
試題解析:(1)因為甲機床為正品的頻率為,
乙機床為正品的頻率約為,
所以估計甲、乙兩機床為正品的概率分別為;
(2)若用甲機床生產這2件零件,設可能獲得的利潤為320元、140元、-40元,它們的概率分別為
,
,
,
所以獲得的利潤的期望,
若用乙機床生產這2件零件,設可能獲得的利潤為為400元、160元、-80元,它們的概率分別為
,
,
,
讓你以獲得的利潤的期望;
若用甲、乙機床各生產1件零件,設可能獲得的利潤為360元、180元、120元、-60元,它們的概率分別為
,
,
,
所以獲得的利潤的期望
,
∵,
所以安排乙機床生產最佳.
科目:高中數學 來源: 題型:
【題目】(12分)若數列{an}是的遞增等差數列,其中的a3=5,且a1,a2,a5成等比數列,
(1)求{an}的通項公式;
(2)設bn= ,求數列{bn}的前項的和Tn.
(3)是否存在自然數m,使得 <Tn<
對一切n∈N*恒成立?若存在,求出m的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣2|﹣|2x﹣a|,a∈R.
(1)當a=3時,解不等式f(x)>0;
(2)當x∈(﹣∞,2)時,f(x)<0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果一個實數數列{an}滿足條件: (d為常數,n∈N*),則稱這一數列“偽等差數列”,d稱為“偽公差”.給出下列關于某個偽等差數列{an}的結論:①對于任意的首項a1 , 若d<0,則這一數列必為有窮數列;②當d>0,a1>0時,這一數列必為單調遞增數列;③這一數列可以是一個周期數列;④若這一數列的首項為1,偽公差為3,-
可以是這一數列中的一項;n∈N*⑤若這一數列的首項為0,第三項為﹣1,則這一數列的偽公差可以是
.其中正確的結論是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓短軸端點和兩個焦點的連線構成正方形,且該正方形的內切圓方程為
.
(1)求橢圓的方程;
(2)若拋物線的焦點與橢圓
的一個焦點
重合,直線
與拋物線
交于兩點
,且
,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左右焦點分別為
,
,離心率為
,點
在橢圓
上,
,
,過
與坐標軸不垂直的直線
與橢圓
交于
,
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,
的中點為
,在線段
上是否存在點
,使得
?若存在,求實數
的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com