精英家教網 > 高中數學 > 題目詳情

設函數
(1)求函數的最小正周期;
(2)設函數對任意,有,且當時,;求函數上的解析式。

(1),(2)

解析試題分析:
(1)函數的最小正周期
(2)當時,
時, 
時, 
得:函數上的解析式為
考點:本題考查了三角函數的性質
點評:研究三角函數的圖象與性質一般先將解析式化簡為一個三角函數,再研究函數的性質. 利用整體代換的思想求出函數的最大值和最小值是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

若存在實常數,使得函數對其定義域上的任意實數分別滿足:,則稱直線的“隔離直線”.已知,為自然對數的底數).
(1)求的極值;
(2)函數是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,在時取得極值.
(Ⅰ)求函數的解析式;
(Ⅱ)若時,恒成立,求實數m的取值范圍;
(Ⅲ)若,是否存在實數b,使得方程在區間上恰有兩個相異實數根,若存在,求出b的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

有三張正面分別寫有數字—2,—1,1的卡片,它們的背面完全相同,將這三張卡片背面朝上洗勻后隨機抽取一張,以其正面的數字作為x的值。放回卡片洗勻,再從三張卡片中隨機抽取一張,以其正面的數字作為y的值,兩次結果記為(x,y)。
(1)用樹狀圖或列表法表示(x,y)所有可能出現的結果;
(2)求使分式有意義的(x,y)出現的概率;
(3)化簡分式;并求使分式的值為整數的(x,y)出現的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)在R上是偶函數,在區間(-∞,0)上遞增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)="|x-1|" +|x-a|,.
(I)當a =4時,求不等式的解集;
(II)若恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)求函數的單調遞增區間;
(Ⅱ)求函數上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數
(1) 判斷并證明函數的奇偶性;
(2) 若,證明函數在(2,+)單調增;
(3) 對任意的恒成立,求的范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題共8分)
已知函數f(x)對任意實數x,y都有f(x+y)=f(x)+f(y),且當x>0時,f(x)>0,f(-1)=-2,求f(x)在[-2,1]上的值域。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视