【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大小.
【答案】
(1)證明:連結AC,設AC與BD交于O點,連結EO,
由O,E分別為AC,CP中點,
∴OE∥PA
又OE平面EDB,PA平面EDB,
∴PA∥平面EDB
(2)證明:由PD⊥平面ABCD∴PD⊥BC又CD⊥BC,
∴BC⊥平面PCD,DE⊥BC.
由PD=DC,E為P中點,故DE⊥PC.
∴DE⊥平面PBC
(3)解:將幾何體放到正方體中,則可得直線AB與平面PBC所成角的大小為45°
【解析】(1)連結AC,設AC與BD交于O點,連結EO,易證EO為△PAC的中位線,從而OE∥PA,再利用線面平行的判斷定理即可證得PA∥平面BDE;(2)依題意,易證DE⊥底面PBC,再利用面面垂直的判斷定理即可證得平面BDE⊥平面PBC;(3)將幾何體放到正方體中,則可得直線AB與平面PBC所成角的大。
【考點精析】根據題目的已知條件,利用直線與平面垂直的判定和空間角的異面直線所成的角的相關知識可以得到問題的答案,需要掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想;已知為兩異面直線,A,C與B,D分別是
上的任意兩點,
所成的角為
,則
.
科目:高中數學 來源: 題型:
【題目】某居民小區內建有一塊矩形草坪ABCD,AB=50米,,為了便于居民平時休閑散步,該小區物業管理公司將在這塊草坪內鋪設三條小路OE,EF和OF,考慮到小區整體規劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且
,如圖所示.
(Ⅰ)設,試將
的周長l表示成
的函數關系式,并求出此函數的定義域;
(Ⅱ)經核算,三條路每米鋪設費用均為400元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合M={ ( x ,y ) | y=f(x) },若對于任意( x1 ,y1 )∈M,都存在( x2 ,y2 )∈M,使得x1 x2 +y1 y2 =0成立,則稱集合M是“理想集合”,則下列集合是理想集合的是( )
A. M={ ( x ,y ) | y= } B. M={ ( x ,y ) | y=log2 (x-1) }
C. M={ ( x ,y ) | y=x2-2x+2 } D. M={ ( x ,y ) | y=cosx }
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,其中
是實數.
(l)若 ,求函數
的單調區間;
(2)當時,若
為函數
圖像上一點,且直線
與
相切于點
,其中
為坐標原點,求
的值;
(3) 設定義在上的函數
在點
處的切線方程為
,若
在定義域
內恒成立,則稱函數
具有某種性質
,簡稱“
函數”.當
時,試問函數
是否為“
函數”?若是,請求出此時切點
的橫坐標;若不是,清說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數定義域為
,若對于任意的
,都有
,且
時,有
.
(1)判斷并證明函數的奇偶性;
(2)判斷并證明函數的單調性;
(3)設,若
,對所有
,
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com