【題目】某居民小區內建有一塊矩形草坪ABCD,AB=50米,,為了便于居民平時休閑散步,該小區物業管理公司將在這塊草坪內鋪設三條小路OE,EF和OF,考慮到小區整體規劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且
,如圖所示.
(Ⅰ)設,試將
的周長l表示成
的函數關系式,并求出此函數的定義域;
(Ⅱ)經核算,三條路每米鋪設費用均為400元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.
【答案】(Ⅰ)見解析;(Ⅱ)見解析.
【解析】
(Ⅰ)根據三角函數定義及勾股定理,即可表示出EF長度,進而用α表示出周長。根據點E、F的極限位置,判斷出角的大小范圍得到定義域。
(Ⅱ)利用三角函數換元,將周長轉化為關于t的函數,結合角α的范圍求得t的范圍,進而得到l的范圍,即為費用最低時的長度。
(Ⅰ)∵在中,
,∴
在中,
,∴
又,
∴即
.
當點F在點D時,這時角最小,求得此時
;
點E在C點時,這時角最大,求得此時
.故此函數的定義域為
(Ⅱ)由題意知,要求鋪路總費用最低,只要求的周長l最小值即可.
由(Ⅰ)得,,
設,則
,∴
由,得
,∴
,
從而,當
,即BE=25時,
所以當 米時,鋪路總費用最低,最低總費用為
元
科目:高中數學 來源: 題型:
【題目】某投資人欲將5百萬元獎金投入甲、乙兩種理財產品,根據銀行預測,甲、乙兩種理財產品的收益與投入獎金的關系式分別為
,其中
為常數且
.設對乙種產品投入獎金
百萬元,其中
.
(1)當時,如何進行投資才能使得總收益
最大;(總收益
)
(2)銀行為了吸儲,考慮到投資人的收益,無論投資人獎金如何分配,要使得總收益不低于,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣|x|+2a﹣1(a為實常數).
(1)若a=1,求f(x)=3的解;
(2)求f(x)在區間[1,2]的最小值為g(a).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)的定義域為R,且滿足
(1)f(1)=3
(2)對于任意的,總有
(3)對于任意的
(I)求f(0)及f(-1)的值
(II)求證:函數y=f(x)-1為奇函數
(III)若,求實數m的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實數a的取值范圍為( )
A.[﹣ ,
]
B.[﹣ ,
]
C.[﹣ ,
]
D.[﹣ ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《張丘建算經》是公元5世紀中國古代內容豐富的數學著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有( )
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com