【題目】已知函數,
.
(1)若,求證:函數
恰有一個負零點;(用圖象法證明不給分)
(2)若函數恰有三個零點,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】2017年10月18日至10月24日,中國共產黨第十九次全國代表大會簡稱黨的“十九大”
在北京召開
一段時間后,某單位就“十九大”精神的領會程度隨機抽取100名員工進行問卷調查,調查問卷共有20個問題,每個問題5分,調查結束后,發現這100名員工的成績都在
內,按成績分成5組:第1組
,第2組
,第3組
,第4組
,第5組
,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現在用分層抽樣的方法在第3,4,5組共選取6人對“十九大”精神作深入學習.
求這100人的平均得分
同一組數據用該區間的中點值作代表
;
求第3,4,5組分別選取的作深入學習的人數;
若甲、乙、丙都被選取對“十九大”精神作深入學習,之后要從這6人隨機選取2人再全面考查他們對“十九大”精神的領會程度,求甲、乙、丙這3人至多有一人被選取的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,
)的圖象的相鄰兩條對稱軸之間的距離為4,且有一個零點為
.
(1)求函數的解析式;
(2)若,且
,求
的值;
(3)若在
上恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某手機生產企業為了解消費者對某款手機的認同情況,通過銷售部隨機抽取50名購買該款手機的消費者,并發出問卷調查(滿分50分),該問卷只有20份給予回復,這20份的評分如下:
男 | 47,36,28,48,48,44,50,46,50,37,35,49 |
女 | 38,37,50,36,38,45,29,39 |
(1)完成下面的莖葉圖,并求12名男消費者評分的中位數與8名女消費者評分的眾數及平均值;
男 | 女 | |
2 | ||
3 | ||
4 | ||
5 |
滿意 | 不滿意 | 合計 | |
男 | |||
女 | |||
合計 |
(2)若大于40分為“滿意”,否則為“不滿意”,完成上面的列聯表,并判斷是否有95%的把握認為消費者對該款手機的“滿意度”與性別有關;
(3)若從回復的20名消費者中按性別用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人作進一步調查,求至少有1名女性消費者被抽到的概率.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出以下關于線性方程組解的個數的命題.
①,
②,
③,
④,
(1)方程組①可能有無窮多組解;
(2)方程組②可能有且只有兩組不同的解;
(3)方程組③可能有且只有唯一一組解;
(4)方程組④可能有且只有唯一一組解.
其中真命題的序號為________________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司的新能源產品上市后在國內外同時銷售,已知第一批產品上市銷售40天內全部售完,該公司對這批產品上市后的國內外市場銷售情況進行了跟蹤調查,如圖所示,其中圖①中的折線表示的是國外市場的日銷售量與上市時間的關系;圖②中的拋物線表示的是國內市場的日銷售量與上市時間的關系;下表表示的是產品廣告費用、產品成本、產品銷售價格與上市時間的關系.
圖① 圖②
第t天產品廣告費用(單位:萬元) | 每件產品成本(單位:萬元) | 每件產品銷售價格(單位:萬元) | |
3 | 6 | ||
10 | 3 | 5 |
(1)分別寫出國外市場的日銷售量、國內市場的日銷售量
與產品上市時間t的函數關系式;
(2)產品上市后的哪幾天,這家公司的日銷售利潤超過260萬元?
(日銷售利潤=(單件產品銷售價-單件產品成本)×日銷售量-當天廣告費用,)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列中,已知
,對于任意的
,有
.
(1)求數列的通項公式.
(2)若數列滿足
,求數列
的通項公式.
(3)設,是否存在實數
,當
時,
恒成立?若存在,求實數
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為
,部分對應值如下表.
x | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
的導函數
的圖象如圖所示:下列關于
的命題:
函數
是周期函數;
函數
在
是減函數;
如果當
時,
的最大值是2,那么t的最大值為4;
函數
的零點個數可能為0、1、2、3、4個.
其中正確命題的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷
與
是否相似?如果相似,求出
與
的相似比;如果不相似,請說明理由;
(2)寫出與橢圓相似且焦點在
軸上、短半軸長為
的橢圓
的標準方程;若在橢圓
上存在兩點
、
關于直線
對稱,求實數
的取值范圍;
(3)如圖:直線與兩個“相似橢圓”
和
分別交于點
和點
,試在橢圓
和橢圓
上分別作出點
和點
(非橢圓頂點),使
和
組成以
為相似比的兩個相似三角形,寫出具體作法.(不必證明)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com