精英家教網 > 高中數學 > 題目詳情

【題目】已知O為原點,拋物線的準線與y軸的交點為H,P為拋物線C上橫坐標為4的點,已知點P到準線的距離為5.

1)求C的方程;

2)過C的焦點F作直線l與拋物線C交于A,B兩點,若以AH為直徑的圓過B,求的值.

【答案】1;(24.

【解析】

1)由題意結合橢圓的性質可得,求得后即可得解;

2)設,直線AB的方程為,聯立方程組結合韋達定理可得,由圓的性質、直線垂直的性質可得,進而可得,再由拋物線的性質即可得解.

1)由題意點,拋物線的準線方程為

,解得(舍),

∴拋物線方程為;

2)由題意拋物線的焦點為,準線方程為,

由題意可知,直線AB的斜率存在且不為0,

,,直線AB的方程為,

代入拋物線方程可得,

,,①

,,

可得,∴,

整理得,即

,②

把①代入②得

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.已知曲線的參數方程為為參數,),曲線的極坐標方程為,點的一個交點,其極坐標為.設射線與曲線相交于,兩點,與曲線相交于,兩點.

1)求,的值;

2)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產某種電子產品,每件產品合格的概率均為,現工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個()一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗一次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數為

1的分布列及其期望;

2)(i)試說明,當越大時,該方案越合理,即所需平均檢驗次數越少;

ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年泉州市農村電商發展迅猛,成為創新農產品交易方式、增加農民收入、引導農業供給側結構性改革、促進鄉村振興的重要力量,成為鄉村振興的新引擎.2019年大學畢業的李想,選擇回到家鄉泉州自主創業,他在網上開了一家水果網店.2019年雙十一期間,為了增加水果銷量,李想設計了下面兩種促銷方案:方案一:購買金額每滿120元,即可抽獎一次,中獎可獲得20元,每次中獎的概率為),假設每次抽獎相互獨立.方案二:購買金額不低于180元時,即可優惠元,并在優惠后的基礎上打九折.

1)在促銷方案一中,設每10個抽獎人次中恰有6人次中獎的概率為,求的最大值點;

2)若促銷方案二中,李想每筆訂單得到的金額均不低于促銷前總價的八折,求的最大值;

3)以(1)中確定的作為的值,且當取最大值時,若某位顧客一次性購買了360元,則該顧客應選擇哪種促銷方案?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求直線關于對稱的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線C的參數方程為(為參數),曲線上異于原點的兩點,所對應的參數分別為.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)當時,直線平分曲線,求的值;

2)當時,若,直線被曲線截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正態分布有極其廣泛的實際背景,生產與科學實驗中很多隨機變量的概率分布都可以近似地用正態分布來描述.例如,同一種生物體的身長、體重等指標.隨著“綠水青山就是金山銀山”的觀念不斷的深入人心,環保工作快速推進,很多地方的環境出現了可喜的變化.為了調查某水庫的環境保護情況,在水庫中隨機捕撈了100條魚稱重.經整理分析后發現,魚的重量x(單位:kg)近似服從正態分布,如圖所示,已知.

(Ⅰ)若從水庫中隨機捕撈一條魚,求魚的重量在內的概率;

(Ⅱ)(。⿵牟稉频100條魚中隨機挑出6條魚測量體重,6條魚的重量情況如表.

重量范圍(單位:kg

條數

1

3

2

為了進一步了解魚的生理指標情況,從6條魚中隨機選出3條,記隨機選出的3條魚中體重在內的條數為X,求隨機變量X的分布列和數學期望;

(ⅱ)若將選剩下的94條魚稱重做標記后立即放生.兩周后又隨機捕撈1000條魚,發現其中帶有標記的有2.為了調整生態結構,促進種群的優化,預備捕撈體重在內的魚的總數的40%進行出售,試估算水庫中魚的條數以及應捕撈體重在內的魚的條數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設點為平面直角坐標系中的一個動點(其中為坐標系原點),點到定點的距離比到直線的距離大1,動點的軌跡方程為.

1)求曲線的方程;

2)若過點的直線與曲線相交于、兩點.

①若,求直線的直線方程;

②分別過點,作曲線的切線且交于點,是否存在以為圓心,以為半徑的圓與經過點且垂直于直線的直線相交于、兩點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區經過一年的新農村建設,農村的經濟收入增加了一倍.實現翻番.為更好地了解該地區農村的經濟收入變化情況,統計了該地區新農村建設前后農村的經濟收入構成比例.得到如下餅圖:

則下面結論中不正確的是

A. 新農村建設后,種植收入減少

B. 新農村建設后,其他收入增加了一倍以上

C. 新農村建設后,養殖收入增加了一倍

D. 新農村建設后,養殖收入與第三產業收入的總和超過了經濟收入的一半

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视